• Title/Summary/Keyword: recycling hydroponic culture

Search Result 9, Processing Time 0.025 seconds

Study on Recycling of Waste Rubbers as Medium Components for Hydroponic Culture of Rose (장미 양액재배 배지의 구성요소로서 폐고무의 재활용에 관한 연구)

  • 김진국;이형규;정병용;황승재
    • Resources Recycling
    • /
    • v.9 no.3
    • /
    • pp.46-53
    • /
    • 2000
  • Recently, the efficient disposal of the waste rubber is necessary due to increasing amount of the waste rubbers. In this paper, method of recycling waste rubbers as components of medium for hydroponic rose culture was suggested. We investigated growth of rose, and macro- and micro-elements, pH and EC of the media amended with waste rubber, In the beginning of culture, stress symptoms such as thin brittle stem and incipient wilting were observed, but they disappeared in a few weeks. Concentration of $Zn^{2+}$ in media at flowering increased in proportion to contents of waste tire in the media. pH of media at flowering were in the range of 5.70 to 6.35. Rose growth in all media, except in wasterock wool mixed with EPDM powder at 9:3 ratio, was normal and equivalent to the control in terms of stem length, number of stems harvested and fresh weight.

  • PDF

Studies on Recycling of Waste Polyurethane ( II ) (폐우레탄고무 재활용에 관한 연구 (II))

  • Lee, Hyung-Kyu;Hwang, Sung-Hyuk;Kim, Jin-Kuk
    • Elastomers and Composites
    • /
    • v.35 no.3
    • /
    • pp.227-235
    • /
    • 2000
  • This study focused on the recycling technology and application of waste polyurethane scrap($5{\sim}7mm$) and waste urethane form from the footware scrap. Firstly we suggest the waste polyurethane can be used as a component of medium for hydroponic rose culture. Secondly, recycled thermoplastic polyurethane(RTPU) was produced and blended it with high impact polystyrene(HIPS). And also, in order to extend application of recycling field, the former was produced with adding the amine foaming agent to RTPU/HIPS alloy. The main purpose of this study is to diverse of the recycling of the waste polyurethane.

  • PDF

The Closed Recycling System for Combination fish Culture and Hydroponic Vegetable Production

  • Takahiro-SAITO;Koji-OTSUBO;Lee, Gonigin;Seishu--TOJO;Kengo-WATANABE;I, Fusakazu-A
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.584-590
    • /
    • 1993
  • The constructed closed recycling system discussed in this technical report will be economically viable in future for the production of fish and vegetable in earth, space station and space colony, further, it will contribute a lot in the prevention of pollution in the world's ecological system. To make combined system, water management (Nitrification) is required, and it took 45 days to breed microorganism which facilitates this process. After this period , the recycle was confirmed to be working .Using derived equations, the expected nutrient characteristics of waste water were determined and it was found that the resulting nutrient balance was almost same as that in hydroponic solution when KOH was added to maintain pH level. Reverse osmosis (RO) system could solve the problem of the low nutrient concentration . It was found that plants grow well in fish waste water which was produced using RO system. RO system could combine fish and plant production through the advantageous use of separated high concentration water for plant and permeated water for fish in integrated combined system.

  • PDF

Development of Drainage Water Disinfection System by Electric Shock in Recirculating Soilless Culture (순환식 수경재배에서 배액의 전기충격살균법 연구)

  • Lee, Mun Haeng;Kim, Sung Eun;Lee, Sang Don;Lee, Jae Eun;Kim, Hak Sun;Cho, Suk Keong;Sim, Sang Youn;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.49-56
    • /
    • 2016
  • This study was conducted to develop the disinfection system using electric shock for recycled nutrient solution in recycling soilless culture. Stainless steel (SUS 316) was found as the most appropriate electrode material for electrical disinfection system from the view of high electrical conductivity, low electric resistance, and low price. There were no changes in nutritional elements when the electric shock passed through the nutrient solution by stainless steel electrode. The amount of electric current increased with width than thickness of the electrode. The farther the distance between the electrodes was increased the time to reach out the aimed amount of current. The electric shock was applied to Ralstonia solanacearum and Fusarium oxysporum as representative bacteria and also fungi. Any of those pathogens were killed with the percentage of higher than 97% in the condition of 15VDC or 24VDC.

Selection of Filamentous Cyanobacteria and Optimization of Culture Condition for Recycling Waste Nutrient Solution (폐양액 활용을 위한 Filamentous Cyanobacteria의 선발 및 최적배양)

  • Yang, Jin-Chul;Chung, Hee-Kyung;Lee, Hyoung-Seok;Choi, Seung-Ju;Yun, Sang-Soon;Ahn, Ki-Sup;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.3
    • /
    • pp.177-183
    • /
    • 2004
  • The discharge of waste nutrient solution from greenhouse to natural ecosystem leads to the accumulation of excess nutrients that results in contamination or eutrophication. There is a need to recycle the waste nutrient solution in order to prevent the environmental hazards. The amount and kind of nutrients in waste nutrient solution might be enough to grow photosynthetic microorganisms. Hence in the present study, we examined the growth and mass cultivation of cyanobacteria in the waste nutrient solution with an objective of removing N and P and concomitantly, its mass cultivation. Four photosynthetic filamentous cyanobacteria (Anabaena HA101, HA701 and Nostoc HN601, HN701) isolated from composts and soils of the Chungnam province were used as culture strains. Among the isolates, Nostoc HN601 performed faster growth rate and higher N and P uptake in the BG-II ($NO_3{^-}$) medium when compared to those of other cyanobacterial strains. Finally, the selected isolate was tested under optimum conditions (airflow at the rate of $1L\;min^{-1}$. in 15 L reactor, initial pH 8) in waste nutrient solution from tomato hydroponic in green house condition. Results showed to remove 100% phosphate from the waste nutrient solution in the tomato hydroponics recorded over a period of 7 days. The growth rate of Nostoc HN601 was $16mg\;Chl-a\;L^{-1}$ in the waste nutrient solution from tomato hydroponics with optimum condition, whereas growth rate of Nostoc HN601 was only $9.8mg\;Chl-a\;L^{-1}$ in BG-11 media. Nitrogen fixing capacity of Nostoc HN601 was $20.9nmol\;C_2H_4\;mg^{-1}\;Chl-a\;h^{-1}$ in N-free BG-11. The total nitrogen and total phosphate concentration of Nostoc HN601 were 63.3 mg N gram dry weight $(GDW)^{-1}$ and $19.1mg\;P\;GDW^{-1}$ respectively. Collectively, cyanobacterial mass production using waste nutrient solution under green house condition might be suitable for recycling and cleaning of waste nutrient solution from hydroponic culture system. Biomass of cyanobacteria, cultivated in waste nutrient solution, could be used as biofertilizer.

Effect of Drainage Reusing Ratio on Growth and Yield of Summer-cultivated Paprika in Recycling Hydroponic Cultivation (순환식 수경재배에서 배액 재사용율이 여름작형 파프리카의 생육 및 수량에 미치는 영향)

  • Jang, Dong-cheol;Choi, Ki-Young;Kim, II-Seop
    • Journal of Bio-Environment Control
    • /
    • v.26 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This experiment was conducted to analyze the effect of drainage reuse rate on the growth and fruiting of summer paprika in closed hydroponic cultivation. The experiment was carried out for 25 weeks from March to September 2015 with 0, 20, 30, 50% mixing ratio of waste nutrient solution using non - recycling hydroponic cultivation as a control. As a result, stem diameter of the test was different in the groups 1 and 2, but no difference showed as the group progressed more than 3 groups. L.A.I tended to decrease with increasing drainage mixing ratio. The number of nodes in the 50% reuse test group was 1.4 compared to the control group, but there was no significant difference. The number of harvested nodes was significantly different in the control group (11.1 nodes) and the 50% reuse test group (8.7 nodes), and the harvested nodes tended to decrease as the drainage was reused. The ratio of harvest was also the same as that of the harvesting node, and the control was the highest at 33.2% and the lowest at the 50% reuse test at 27.6%. Relative yields were reduced by 30%, 35% and 45% in the control group in the first group, and this tendency was also observed in the second and fourth groups. However, in the 3 and 5 groups, the production of 50% test group increased by 13% and 5%. The ratio of unmarketable fruit was increased 2%, 4%, 4%, and 7% in 0%, 20%, 30% and 50% reuse test, respectively. In conclusion, if the decrease in yield due to the decline in early growth is carefully managed, even if the imbalance of inorganic ions occurs after the mid-term growth, the growth of the crop will enter into a stable period and the re-use will not be worried about the growth and the yield decrease.

Reusing Techniques of Nutrient Solution for Recycling Hydroponic Culture of Lettuce (순환식 상추 양액재배시 양액재활용 기술)

  • 이성재;서명훈;이상우;심상연;이수연
    • Journal of Bio-Environment Control
    • /
    • v.8 no.3
    • /
    • pp.172-182
    • /
    • 1999
  • Leaf lettuce(Lacaug sativa L.) was cultivated in deep flow culture to investigate growth and yield in relation to different reusing method of nutrient solution after once cultivation. Five different treatments were allocated to the nutrient solutions - Control(total renewal of solution), NSS(nutrient solution supplement), U control, NSAC(nutrient solution analysis and compensation), NSAC and Humus supply(NSAC with supply of Humus). The pH of solution was kept stable below 7.0 during 4 successive culture in NSAC and NSAC and Humus supply. U was sharply declined in NSS as the number of cultivation was increased. Gmwth and yield of NSAC was similar to those of Control because nutrient elements were kept the balance to the better growth, while the lettuce grown in NSS and EC control was shown lower growth rate. In the nutrient solutions, Content of N $O_3$-N and N $H_4$-N were remarkably decreased after the cultivation in all treatments. Ca and Mg were shown to be accumulated in nutrient solution regardless of culture times and treatments. After the first culture in NSAC and Humus supply, total N and P$_2$ $O_{5}$ content in leaves were lower than any other treatments, but Ca content was higher. Those were not significant as following cultures, and no significant difference of K and Mg content were shown among the treatments.

  • PDF

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Effects of Irrigation Frequency, Particle Size and Depth of Perlite Medium on Growth and Flowering of Dendranthema grandiflorum Grown on Recycling System (순환식 양액재배에 있어서 관주 주기, Perlite의 입자 크기 및 깊이가 국화 '수방력'의 생육과 개화에 미치는 영향)

  • Kim, Sun Hwa;Kim, Ki Sun
    • Horticultural Science & Technology
    • /
    • v.17 no.3
    • /
    • pp.355-360
    • /
    • 1999
  • This study was carried out to investigate the effect of irrigation frequency, particle size and depth of perlite medium on the growth of Dendranthema grandiflorum (Ramat.) Kitamura 'Shuhouno-chikara' grown on recycling system. In Exp 1, the irrigation frequency (IF) was designed as 3 (IF3), 9 (IF9), and 18 (IF18) times a day. Fine and coarse particle size (PS) of perlite was used as a media, and depth of media (DM) was 15 and 10 cm contained in $34{\times}120{\times}15cm$ styrofoam bed. In Exp 2, the IF was 3 (IF3), 6 (IF6), and 9 (IF9) times a day with the same amount of nutrient solution. Fine and coarse PS were used, and DM was 15 and 7.5 cm. In this study, high IF and fine PS was favorable for plant growth. However, as the IF became frequent, difference of plant growth between fine and coarse PS became smaller. Also, shallow media showed little difference with deep media in plant growth. Thus, decreasing the amount of media was recommended to reduce the production cost.

  • PDF