• Title/Summary/Keyword: recycling & reuse of materials

Search Result 90, Processing Time 0.029 seconds

Application of Solvent Extraction to the Treatment of Industrial Wastes

  • Shibata, Junji;Yamamoto, Hideki
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.259-263
    • /
    • 2001
  • There are several steps such as slicing, lapping, chemical etching and mechanical polishing in the silicon wafer production process. The chemical etching step is necessary to remove damaged layer caused In the slicing and lapping steps. The typical etching liquor is the acid mixture comprising nitric acid, acetic acid and hydrofluoric acid. At present, the waste acid is treated by a neutralization method with a high alkali cost and balky solid residue. A solvent extraction method is applicable to separate and recover each acid. Acetic acid is first separated from the waste liquor using 2-ethlyhexyl alcohols as an extractant. Then, nitric acid is recovered using TBP(Tri-butyl phosphate) as an extractant. Finally hydrofluoric acid is separated with the TBP solvent extraction. The expected recovered acids in this process are 2㏖/l acetic acid, 6㏖/1 nitric acid and 6㏖/l hydrofluoric acid. The yields of this process are almost 100% for acetic acid and nitric acid. On the other hand, it is important to recover and reuse the metal values contained in various industrial wastes in a viewpoint of environmental preservation. Most of industrial products are made through the processes to separate impurities in raw materials, solid and liquid wastes being necessarily discharged as industrial wastes. Chemical methods such as solvent extraction, ion exchange and membrane, and physical methods such as heavy media separation, magnetic separation and electrostatic separation are considered as the methods for separation and recovery of the metal values from the wastes. Some examples of the application of solvent extraction to the treatment of wastes such as Ni-Co alloy scrap, Sm-Co alloy scrap, fly ash and flue dust, and liquid wastes such as plating solution, the rinse solution, etching solution and pickling solution are introduced.

  • PDF

An Experimental Study to Determine the Mechanical Properties of Recycled Aggregate Separated from Demolished Concrete and Recycled Aggregate Concrete (폐 콘크리트에서 분리된 재생골재와 재생콘크리트의 공학적 특성규명을 위한 실험적 연구)

  • 전쌍순;이효민;황진연;진치섭;박현재
    • The Journal of Engineering Geology
    • /
    • v.13 no.3
    • /
    • pp.345-358
    • /
    • 2003
  • Recently, the reuse of coarse aggregate derived from demolished concrete was introduced into practice with two environmental aspects: protection of natural sources of aggregate and recycling of construction waste. However, recycled aggregate has been used for the very limited application such as subbase material for pavement and constructional filling material because it was considered as low quality constructional materials. In the present study, in order to examine the possibility that recycled aggregate can be used for concrete mixing, we conducted various experimental tests to identify mineralogical, chemical and mechanical properties of recycled aggregate and to determine the workability and mechanical properties of recycled aggregate concrete (RAC). The cement paste and mortar contained in recycled aggregate significantly affect the basic mechanical properties of aggregate and the workability and mechanical properties of RAC. However, RCA mixed with the proper replacement ratio of recycled aggregate shows the comparable compressive strength and freeze and thaw resistance to those of normal concrete. Therefore, it is considered that recycled aggregate can be widely used for concrete if the cement paste and mortar can be efficiently removed from recycled aggregate and/or if the effective replacement ratios of recycled aggregate are applied for mixing concrete.

A Study on the Reduction of $CO_2$ Emission by the Application of Clean Technology in the Cement Industry (시멘트산업공정에서의 $CO_2$배출량 저감을 위한 청정기술 적용에 관한 연구)

  • Park, Young-G.;Kim, Jeong-In
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2010
  • The feasibility of clean technology to minimize the $CO_2$ emission by recycling and reuse the waste materials and energy have been studied for the cement industry. A life cycle assessment (LCA) was performed for an alternative raw material-supply method to use the molted slag as the major raw material in the cement clinker manufacturing. Using this new method, a 60% of $CO_2$ could be reduced that comes out during the decarboxylation from the cement rotary kiln. The energy-efficiency improvement and the alternative energy methods that had been determined in our previous study through the environmental assessment of cement industry were applied to the study for the reduction of $CO_2$ emission. The natural gas, one of the fossil fuels, was also used as the first choice to get the result at the earliest time by the most economic and the most efficient green technology and to switch into the carbon neutral energy consumption pattern.

Separation of Waste TNT and RDX Mixture Using SMB Process (SMB 공정을 이용한 폐기 TNT와 RDX 혼합 용액의 분리)

  • Oh, Donghoon;Kim, Sunhee;Lee, Keundeuk;Ahn, Iksung;Lee, Chang-Ha
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.163-171
    • /
    • 2017
  • Currently, researches on recycling and reuse of waste energetic materials have recently gained a great attention from advanced countries due to ever tightening environmental regulations. In this study, as a part of a recycling technology, the experiments and dynamic simulation of simulated moving bed (SMB) process were performed to efficiently separate TNT and RDX from their mixture, which are main components of ammunition. In order to determine the operation zone of SMB process, the retention times of TNT and RDX were measured using HPLC at different flow rates and the adsorption equilibrium of each component was obtained by using a moment method. According to the adsorption equilibrium and the triangle theory of SMB process, four operation points were determined and separation experiments were carried out by the SMB process using the solvent consisting of acetonitrile and water. Two different mixing ratios (6:4 and 1:1) of acetonitrile and water were chosen for the experiment due to the great impact of mixing ratio of the solvent on separation. The performance of SMB process was evaluated by purity, recovery, productivity and solvent consumption. Pure TNT and RDX were successfully obtained from the SMB process and the dynamic simulation for the SMB process agreed well with the experimental results. Therefore, the dynamic model could be applied for predicting the dynamic behavior of the SMB process and designing a large scale SMB process.

Recovery of phosphoric acid from the waste acids in semiconductor manufacturing process (반도체 제조공정에서 발생하는 혼산폐액으로부터 고순도 인산 회수)

  • Park, Sung-Kook;Roh, Yu-Mi;Lee, Sang-Gil;Kim, Ju-Yup;Shin, Chang-Hoon;Ahn, Jae-Woo
    • Proceedings of the Korean Institute of Resources Recycling Conference
    • /
    • 2006.05a
    • /
    • pp.90-94
    • /
    • 2006
  • The waste solution discharged from the LCD manufacturing process contains acids like nitric, acetic and phosphoric acid and metal ions such as Al, Mo and other impurities. It is important to removal of impurities to tess than 1ppm in phosphoric acid to reuse as an etchant because the residual impurities even in sub-ppm concentration in semiconductor materials play a major role on the electronic properties. In this study, we have been clearly established that a mixed system of solvent extraction, diffusion dialysis and ion-exchange technique, which made individually the most of characteristics is developed to commercialize in an efficient system for recovering the high-purity phosphoric acid. By applying vacuum evaporation, the yield of the process are almost 99% removal of nitric acid and acetic acid was achieved. And by applying the solvent extraction method with tri-octyl phosphate(TOP) as an extractant, the removal of acetic and nitric acid from the acid mixture was achieved effectively at the ratio O/A=1/3 with four stages and the stripping of nitric acid from organic phase is attained at a ration of O/A=1 with six stages by distilled water. About 97% and 76% removal of Al and Mo were achieved by diffusion dialysis. Essentially complete less than 1ppm removal of Al, Mo by using ion exchange ion resin and purification of the phosphoric acid was obtain.

  • PDF

The Study of Preparation of Block Using Wastewater Sludge of Petrochemical Factory (석유화학공장 폐수슬러지를 이용한 벽돌제조 연구)

  • Hu, Kwan;Lu, Juk-Yong;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.2
    • /
    • pp.66-73
    • /
    • 2003
  • To investigate the availability of solidified wastes as resource, wastewater sludge, waste gypsum and fly ash were mixed and the results with various mixing ratios are as follows. Compressive strength turned out to be increasing as the amount of waste gypsum increases, keeps longer curing inhibition, and higher forming Pressure under the conditions of waste gypsum/sludge ratio 0.31-0.45, and 0.9kg cement as 15% and 1.2kg cement as 20% of total amount. Solidified agent under the fly ash/sludge ratio 0.45, 0.6, compressive strength seemed to be higher than standard one which means solidified wastes with these conditions could be applicable in real life. These results inform that concentrations of the leachate $Cr^{+6}$, Cu, Zn, Cd, Pb solidified matrix, containing low concentration of heavy metal, were cured with/without enough time it still will cause adverse effect on nature environment and application of heavy metal sequester must be needed to reuse industrial wastes from incineration plant solidified matrix. Total cost price, when considering manufacturing capability of the facilities for resourcerizing as 18,000ton was presented 678,664,000 won, as it were, manufacturing cost price was 37,704 won per ton. The results as above has shown that it's possible to use the mixture of waste gypsum/sludge, fly ash/sludge, cement, additions, and solidification matter as substitute of materials like brick, block, interlocking which has proper compressive strength of KS L 5201 and KS F 4004.

  • PDF

Environmental Life Cycle Assessments on Nano-silver Inks by Wet Chemical Reduction Process (습식환원법으로 제조한 은나노 잉크의 환경 전과정 평가)

  • Lee, Young-Sang;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2015
  • Utilized in a variety of electronic components, electronic components industry with metallic ink technology was established itself as a major technology research and development was gradually increasing, silver ink that is excellent in conductivity and stability, have long been used in the industry of electronic components in recent years and silver ink has been the size of nanoscale particles dispersed by developing display, an electronic tag, a flexible circuit board or the like used in the semiconductor and electronics as has been highlighted in, however industry modernization of equipment by increasing the production and consumption of products generated during the production process and environmental pollutants by use of waste products is expected to bring a serious environmental problem. In this study, prepared by a wet reduction method, the manufacturing process of the silver nano-ink to the entire process of the environmental impact assessment (LCA) was evaluated using the techniques. Life cycle assessment software GaBi 6 was used as received from the relevant agencies of the silver nano-ink data with reference to the manufacturing process, building inventory was international organization for standardization (ISO) 14040, 14044 compliant LCA conducted over four stages.

Study of Pro-environmental Development for Golf Course in Korea (한국 골프장의 친환경적 개발에 관한 연구)

  • 김광두
    • Asian Journal of Turfgrass Science
    • /
    • v.12 no.1
    • /
    • pp.49-78
    • /
    • 1998
  • Nowadays, there are increasing demands of golf courses and it is necessary to make more golf courses than the present. To do this, we need to improve the environmental problems with the regional inhabitants, and it is said that the first thing to be considered in developing any golf course in Korea is to preserve the environment. In this context, the purpose of this study is to set forth several design factors to lessen the negative impacts which are accompanied with the development of golf courses. 1. The present conditions of golf courses in Korea Many new golf courses have come into being, particularly since the late 1980s, and now, in the year of 1997, over one hundred of golf courses are doing their business, yet the number of golf course is still less than required. So far, over a half of them have been made in the vicinity of Seoul on account of various reasons, and this has adversely affected on our natural environment. This unreasonable development of golf courses has caused serious water pollution, landslides and the other problems. Also, the topography of Korea is not good for golf courses. Although the demands of golf courses are increasing, the suitable sites for them are very limited, and therefore it is sometimes unavoidable to make golf courses on steep hills. Consequently, in designing golf courses in Korea, the most important thing is the balance between natural environment and artificial environment. 2.Eco-friendly golf course design factors 1) The concept of eco-friendly golf courses Ecologically sustainable and sound golf courses which are made by eco-friendly approaches 2)Basic conditions of eco-friendly golf courses (1)The most suitable sites (2) Conservation of existing ground as much as possible (3)Proper use of agricultural chemicals which have great impacts on the environment (4) Reasonable use of fertilizers (5) Developing a specialized fertilizer only for grass (6) Adaptation of organic agriculture (7) Improvement of grass sorts (8) Establishing reservoirs for purifying the water from golf courses 3) Eco-friendly golf courses (1) Location-Enough area /Gentle slope/Winding ground/Including lakes or streams /Not crossing wind's main direction Facing south or southeast /Suitable soIl for grass /Good drainage /Low level of underground water (2)Course layout and design -Consideration about existing contours as much as possible -Adaptation of Scotish design trend -Various holes' configuration -Consideration toward surrounding landscapes -Reducing grass areas -Giving buffer zones -Adapting computer methods in the process of site analysis and design (3) Eco-friendly considerations in constructing and managing golf courses -Protection of wildlife -Reuse of existing forests and preservation of topsoil -Renovation of old-fashioned courses -Reducing grass areas -Purification of water -Standization of management -Strict regulations against chemicals -Recycling organic materials -Through separation of the water inside golf courses and out of bounds -Getting proper construction works done in a due time 4.Eco-friendly considerations from a viewpoint of cultural environment 1) Well-matched landscape design and events planning 2) Implement of identifications and awarding systerns 3)Acknowledgement of superintendents' qualitications in the maintenance of golf courses 4)Increasing public golf courses and keeping good relationships with the neighbors near golf courses Key words: Pro-environmental development, Golf course.

  • PDF

A Comparative Analysis on Generated Construction Waste Quantities in a Case Study for Deconstruction of an Apartment (공동주택의 분별해체 시험시공을 통한 건설폐기물 발생량 비교 분석)

  • Kim, Hyojin;Kang, Leenseok;Kim, Changhak
    • Korean Journal of Construction Engineering and Management
    • /
    • v.15 no.6
    • /
    • pp.63-70
    • /
    • 2014
  • Deconstruction of the building must be applied firstly in order to improve recycling and reuse of construction wastes. In this study have done a case study for deconstruction of an apartment. All construction waste(CW) which will be generated during deconstruction was examined in each part of the building. Because drawing did not exist in most of the old building, we drew up floor plans of buildings. After analyzing these drawings, estimated quantities of CW. It was measured working time of labor and equipments for deconstruction and general demolition on each building of the apartment. In addition, it was proposed in the volume and weight per unit after analyzing detailed measurement of CW which was generated in the process of deconstruction and traditional demolition. It suggested recovery rate at a site, volume and weight conversion factors, and waste basic unit per area that based on the results of comparative analysis on the amount of CW which is calculated from drawing and generated at a site. These factors will be used fundamental materials for estimating quantities and treatment cost of CW, and scheduling of works.

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.