• Title/Summary/Keyword: recycled resources

Search Result 1,527, Processing Time 0.029 seconds

Properties of Eco-Construction Material Using Recycled Sewage Sludge Ash (하수슬러지 소각재를 재활용한 친환경 건설 소재의 재료적 특성)

  • Jo, Byung-Wan;Lee, Jea-Ik;Park, Seung-Kook;Lee, Jae-Seung
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.667-676
    • /
    • 2007
  • As the 21st century began, cement and concrete that are representatives of modem building materials became a major factor in global warming, air pollution and environmental pollution. Also, the problems that are generated while pursuing high performance and high strength became social issues. Therefore, it has become urgent to prepare counter plans. This study has aimed at the recycling of sewage sludge ash and developing it as a new concept in building material which serves the environmental considerations for long-lasting developmental purpose. Also, the study aimed to find a substitute for scarce natural resources and to secure high techniques for waste recycling. The purpose of this study was also to solve fundamentally secondary environmental pollution. The results revealed that the chemical components of sewage sludge ash are mainly $SiO_2\;and\;Al_2O_3$ which are similar to the components of pozzolan. Also, it was identified that sewage sludge ash can be utilized as a hardened specimen with an alkali activated pozzolan reaction. Considering the possibility of appropriate strength development and the advantage of drying shrinkage, compared with that of cement, it was believed that sewage sludge ash can demonstrate a function as a substitute for cement given.

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.

Hydrolysis of Agricultural Residues and Kraft Pulps by Xylanolytic Enzymes from Alkaliphilic Bacillus sp. Strain BK

  • Kaewintajuk Kusuma;Chon Gil-Hyong;Lee Jin-Sang;Kongkiattikajorn Jirasak;Ratanakhanokchai Khanok;Kyu Khin Lay;Lee John-Hwa;Roh Min-Suk;Choi Yun-Young;Park Hyun;Lee Yun-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1255-1261
    • /
    • 2006
  • An alkaliphilic bacterium, Bacillus sp. strain BK, was found to produce extracellular cellulase-free xylanolytic enzymes with xylan-binding activity. Since the pellet-bound xylanase is eluted with 2% TEA from the pellet of the culture, they contain a xylan-binding region that is stronger than the xylan-binding xylanase of the extracellular enzyme. The xylanases had a different molecular weight and xylan-binding ability. The enzyme activity of xylanase in the extracellular fraction was 6 times higher than in the pellet-bound enzyme. Among the enzymes, xylanase had the highest enzyme activity. When Bacillus sp. strain BK was grown in pH 10.5 alkaline medium containing xylan as the sole carbon source, the bacterium produced xylanase, arabinofuranosidase, acetyl esterase, and $\beta$-xylosidase with specific activities of 1.23, 0.11, 0.06, and 0.04 unit per mg of protein, respectively. However, there was no cellulase activity detected in the crude enzyme preparation. The hydrolysis of agricultural residues and kraft pulps by the xylanolytic enzymes was examined at 50$^{\circ}C$ and pH 7.0. The rate of xylan hydrolysis in com hull was higher than those of sugarcane bagasse, rice straw, com cop, rice husk, and rice bran. In contrast, the rate of xylan hydrolysis in sugarcane pulp was 2.01 and 3.52 times higher than those of eucalyptus and pine pulp, respectively. In conclusion, this enzyme can be used to hydrolyze xylan in agricultural residues and kraft pulps to breach and regenerate paper from recycled environmental resources.

Multi-stage Process Study of PEI-PDMS Hollow Fiber Composite Membrane Modules for $H_2/CO_2$ Mixed Gas Separation ($H_2/CO_2$ 혼합기체의 분리를 위한 PEI-PDMS 중공사 복합막 모듈의 다단 공정 연구)

  • Lee, Chung Seop;Cho, Eun Hye;Ha, Seong Yong;Chung, Jong Tae;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.23 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Poly(ether imide) (PEI)-poly(dimethylsioxane) (PDMS) composite membranes and their modules were prepared, which are capable of selective $CO_2$ separation from the mixture gas. The gas flow rate, concentration, recovery ratio of $H_2$ and removal ratio of $CO_2$ outflowing by stage-cut were characterized at $25^{\circ}C$ and the constant pressure. In addition, to increase the recovery ratio of $H_2$, one stage, two stage series connection, and three stages series + parallel connection tests were carried out. When the stage-cut was 0.32 for the three stages connection operation, the concentration $H_2$ of the produced gas and the recovery ratio of $H_2$ was 97% and 85%, respectively. And also the removal ratio of $CO_2$ was 90% was obtained and the recycled gas concentration was similar with that of the feed gases.

A Study on Practical Applications of Environmental Education related to Food Waste Collected from Elementary School Foodservices(I) (초등학교 급식에서 배출되는 음식물쓰레기의 환경교육적 활용(I) - 음식물쓰레기 현황 및 환경교육적 활용 분석을 중심으로 -)

  • 서현창;김인호;이태근
    • Hwankyungkyoyuk
    • /
    • v.11 no.2
    • /
    • pp.130-143
    • /
    • 1998
  • This study was conducted as a preliminary step to establish a model for the practical application of environmental education related to food wastes collected from elementary school foodservices. Methods of treatment and present recycling status of food wastes in elementary schools in Kyonggido were surveyed. The consciousness of dieticians who have been serving for elementary school foodservices was also analyzed through the survey questions concerning environmental education for the reduction and recycling of food wastes. The results derived from this survey were as follows: The major portion of food wastes from elementary school foodservices was constituted with vegetables and soup, and an average amount of food wastes per day was highest in June and July. Therefore environmental education related to reduction of wastes was needed in the first semester of school terms, and the possible reduction of food wastes achieved through the proper planning of school foodservice menu was also needed. In most cases food wastes were collected and treated by animal growing farmers or composted by machines in school. In operating composting machines microorganism inoculant was mostly used but dieticians pointed out the problem of a nasty odor, insects, and high energy consumption. This situation means it has not been operated efficiently and suggests an efficiency problem of machine composting in elementary schools because composting itself is based on the aerobic digestion and high temperature fermentation which kills insects and harmful microorganisms. Elementary school dieticians in Kyonggido were aware that food wastes cause main pollution problem, and that food wastes are valuable resources which can be recycled, and recycling of food wastes is inevitable. But more than half of the schools surveyed have not been reused food wastes in school, so a proper model for recycling and reuse of food wastes in school grounds was thought to be needed. Environmental education programs related to food wastes have not been peformed in more than half of the schools surveyed. It was concluded that the following three plans will be helpful to reduce school food wastes. First, environmental education should be enforced, second, teachers' and dieticians' intensive teaching concerning food wastes should be needed, and finally establishment of a model for recycling and reuse of food wastes in school grounds and its application to environmental education would offer a valuable field experience to school students.

  • PDF

The Effect of SO2-O2 Mixture Gas on Phase Separation Composition of Bunsen Reaction with HIx solution (HIx 용액을 이용한 분젠 반응에서 상 분리 조성에 미치는 SO2-O2 혼합물 기체의 영향)

  • Han, Sangjin;Kim, Hyosub;Ahn, Byungtae;Kim, Youngho;Park, Chusik;Bae, Kikwang;Lee, Jonggyu
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.421-428
    • /
    • 2012
  • The Sulfur-Iodine (SI) thermochemical hydrogen production process is one of the most promising thermochemical water splitting technologies. In the integrated operation of the SI process, the $O_2$ produced from a $H_2SO_4$ decomposition section could be supplied directly to the Bunsen reaction section without preliminary separation. A $HI_x$ ($I_2+HI+H_2O$) solution could be also provided as the reactants in a Bunsen reaction section, since the sole separation of $I_2$ in a $HI_x$ solution recycled from a HI decomposition section was very difficult. Therefore, the Bunsen reaction using $SO_2-O_2$ mixture gases in the presence of the $HI_x$ solution was carried out to identify the effect of $O_2$. The amount of $I_2$ unreacted under the feed of $SO_2-O_2$ mixture gases was little higher than that under the feed of $SO_2$ gas only, and the amount of HI produced was relatively decreased. The $O_2$ in $SO_2-O_2$ mixture gases also played a role to decrease the amount of a impurity in $HI_x$ phase by only striping effect, while that in $H_2SO_4$ phase was hardly affected.

Failure Mode and Effect Analysis for Remanufacturing of the Old Extrusion Press (노후 압출기의 재제조를 위한 고장모드 영향분석)

  • Jung, Hang-Chul;Yun, Sang-Min;Oh, Sang-Ho;Baeg, Chang Hyun;Kong, Man-Sik
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.297-305
    • /
    • 2021
  • In the domestic aluminum industry, the extrusion process is a major process accounting for more than 40% of the total production. However, most domestic aluminum extrusion companies produce aluminum using old equipment that is more than 30 years old. Extrusion press is when the equipment is not replaced before the wear and breakage of major parts occur, reducing productivity and increasing the defect rate compared to new equipment. The old extrusion press often loses part drawings, so it is difficult to repair them properly on-site and to remanufacture them due to the lack of technical skills for maintenance. Therefore, a systematic remanufacturing plan must be designed from dismantling the equipment. In this study, remanufacturing FMEA was devised to remanufacture old extrusion press. The risk priority was analyzed by considering the degree of damage to the recycled parts, the cycle due to breakage/damage during the extrusion process, and the value of recycling resources due to remanufacturing. To standardize the remanufacturing process, remanufactured FMEA was performed through part analysis according to the structural analysis of the extrusion press. In addition, remanufacturing priorities were selected for each part, while remanufacturing itself was studied for efficiency of resource circulation and product quality stabilization.

Engineering Characteristics of CLSM Using Bottom Ash and Eco-friendly Soil Binder (친환경 고결제와 저회를 활용한 유동성 복토재의 공학적특성)

  • Park, Giho;Kim, Taeyeon;Lee, Yongsoo;Lee, Bongjik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.5
    • /
    • pp.23-29
    • /
    • 2019
  • In general, pipe laying works are performed by constructing underground facilities such as pipes and then refilling the rest of the area with sand or soil. However, there are many problems in the compaction process such as difficulties in tampering around the underground facility and low compaction efficiency. Such problems cause deformation and damage to the underground pipes during refilling work and ultimately cause road sinks. Construction methods using CLSM are one of the typical methods to solve these issues, and recently, studies on CLSM using coal ash, which has similar engineering properties as sand, have been actively performed to protect environment and recycle resources. While many studies have been conducted to recycle fly ash in many ways, the demand for recycling bottom ash is increasing as most of the bottom ash is not recycled and reclaimed at ash disposal sites. Therefore, in order to find bottom ash applications using eco-friendly soil binders that are environmentally beneficial and conform with CLSM standards, this study investigated flow characteristics and strength change characteristics of eco-friendly soil binders, weathered granite soil, a typical site-generated soil, bottom ash, and fly ash mixed soil and evaluated the soil pollution to present CLSM application methods using bottom ash.

A Study on the Environmentally-friendly Design Techniques Extract and Applying Modern of Traditional Residential Area - The Case of Dokrakdang in Kyungbuk Province - (전통주거공간의 환경친화적 설계기법 추출 및 현대적 적용 - 경상북도 독락당을 사례로 -)

  • Heo, Jun;Song, Byeong Hwa
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.29 no.2
    • /
    • pp.63-72
    • /
    • 2011
  • The aim of this study, a traditional residential area in the environmentally friendly design techniques to identify the techniques and principles that have been carried out to reestablish the principles. To do this, through literature review environmental performance is reflected in the traditional residential area side of resources conservation, locational aspects, spatial configuration, and how cases were selected looking for ways to apply modern. Are examples of upper class housing in the Chosen Dynasty Period period construction relatively well-preserved round and a good building with a clear housing Dokrakdang year were selected. Locational aspects of the terrain with minimal changes to the building and construction techniques were entirely in terms of environmental conservation and environmental temperature was adjusted to regulate the room temperature technique could be seen. In terms of cycling in natural materials were recycled. and water make used of positive through water cycling technique & water control. In addition, the importance of landscape views overlooking the landscape from inside to outside through the regulation of the various internal and external space technique was used to attract and expand. Traditionality in the pursuit of modern space, simply cut off because of tradition rather than to restore or recover the organizing principle inherent in the traditional space, and extraction of the contemporary social, cultural and environmental understanding of space is acceptable in basis. Environmentally-friendly design techniques in a traditional residential area for a long time to be developed by the experience of its application of modern environmental and energy problems and pleasant environment to the creation of human life and are subject to significant swings in that.

A Fundamental Study on Shearing/Bonding Characteristics of Interface Between Rock Mass and Backfills in Mine Openings (폐광산 채움재와 암반 경계부의 전단 및 접합특성에 관한 기초 연구)

  • Kim, Byung-Ryeol;Lee, Hyeon-woo;Kim, Young-Jin;Cho, Kye-Hong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.623-646
    • /
    • 2021
  • As the demand for electric power increases with acceleration of electrification at home and abroad, the needs for coal-fired electrical power plant are accordingly increased. However, these coal-fired electrical power plants induce also many environmental problems such as increase of air pollutants, increase of possibility of land contamination by reclamation of coal ash, even though these power plants have a good economical efficiency. In case of a by-product of coal-fired electrical power plants, only 70% of them are recycled and the remaining 30% of by-product are fully buried in surrounding ground. Consequently, this study deals with coal ash backfilling mechanism in abandoned mine openings for the purposes of increasing the coal ash recycling rate as well as securing the mine area stability. In order to analyze the backfill and ground reinforcement by interaction between rock mass and backfills, the copying samples of discontinuous surface with different roughnesses were produced for bond strength tests and direct shear tests. And statistical analysis was also conducted to decide the characteristics of bond and shear behavior with joint roughness and their curing day. Numerical simulations were also analyzed for examining the effect of interface behavior on ground stability.