• Title/Summary/Keyword: recycled energy

Search Result 359, Processing Time 0.023 seconds

Mechanical Properties of Concrete Using Recycled Coarse Aggregate from Nuclear Power Plant Simulated Concrete (원자력발전소 모의 콘크리트로부터 생산된 순환 굵은 골재 활용 콘크리트 역학적 특성)

  • Lee, Seong-Cheol;Shin, Kyung-Joon;Kim, Chang-Lak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.2
    • /
    • pp.167-174
    • /
    • 2020
  • Many researches have been conducted to utilize recycled aggregates in Korea, but since most sources of recycled aggregates are not clear, there is a lot of uncertainty in applying the existing research results on recycle of aggregates generated from nuclear power plants. In this study, therefore, in order to investigate the possibility of recycling coarse aggregates generated through dismantling of nuclear power plants in Korea, recycled coarse aggregates were produced from concrete simulating nuclear power plants in Korea. Using the recycled coarse aggregates, concrete was mixed in consideration of the mixing ratio of the recycled coarse aggregates, and the mechanical properties were experimentally investigated. From the test results, as the mixing ratio of recycled coarse aggregates increased. concrete compressive strength, tensile strength, and elastic modulus generally decreased up to 36, 37, and 27% from the mechanical properties of normal concrete, respectively. Therefore, it can be concluded that limitation on the mixing ratio of recycled coarse aggregates is necessary when coarse aggregates are recycled through dismantling of nuclear power plants.

Prediction models of compressive strength and UPV of recycled material cement mortar

  • Wang, Chien-Chih;Wang, Her-Yung;Chang, Shu-Chuan
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.419-427
    • /
    • 2017
  • With the rising global environmental awareness on energy saving and carbon reduction, as well as the environmental transition and natural disasters resulted from the greenhouse effect, waste resources should be efficiently used to save environmental space and achieve environmental protection principle of "sustainable development and recycling". This study used recycled cement mortar and adopted the volumetric method for experimental design, which replaced cement (0%, 10%, 20%, 30%) with recycled materials (fly ash, slag, glass powder) to test compressive strength and ultrasonic pulse velocity (UPV). The hyperbolic function for nonlinear multivariate regression analysis was used to build prediction models, in order to study the effect of different recycled material addition levels (the function of $R_m$(F, S, G) was used and be a representative of the content of recycled materials, such as fly ash, slag and glass) on the compressive strength and UPV of cement mortar. The calculated results are in accordance with laboratory-measured data, which are the mortar compressive strength and UPV of various mix proportions. From the comparison between the prediction analysis values and test results, the coefficient of determination $R^2$ and MAPE (mean absolute percentage error) value of compressive strength are 0.970-0.988 and 5.57-8.84%, respectively. Furthermore, the $R^2$ and MAPE values for UPV are 0.960-0.987 and 1.52-1.74%, respectively. All of the $R^2$ and MAPE values are closely to 1.0 and less than 10%, respectively. Thus, the prediction models established in this study have excellent predictive ability of compressive strength and UPV for recycled materials applied in cement mortar.

The Status of Domestic and International Quality Standards for Recycled Nickel Sulfate and Comparison of Electroplating Performance Between Reagent and Recycled Products (재활용 황산니켈의 국내·외 품질기준현황 및 생산제품의 전해도금 성능 비교)

  • Park, Sung Cheol;Kim, Yong Hwan;Shin, Ho Jung;Lee, Man Seung;Son, Seong Ho
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.55-62
    • /
    • 2021
  • In Korea, a good recycled product (GR) certification system was introduced in 1997 to improve resource and energy use efficiency. However, in industry and society, recycled products are not used well because of the lack of awareness of recycled materials. In this study, the status of domestic and international quality standards for nickel materials was investigated, and the purity and electrochemical properties of nickel sulfate prepared from ore and nickel sulfate recovered from waste lithium-ion batteries were evaluated during the electroplating process. As a result of the test, it was found that there is no quality difference between recycled nickel sulfate and high-purity nickel sulfate reagents when used in the electroplating industry.

Current Status of Titanium Recycling Technology (타이타늄의 리사이클링 기술 현황)

  • Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.30 no.1
    • /
    • pp.26-34
    • /
    • 2021
  • Titanium is the fourth most abundant structural metal, after aluminum, iron, and magnesium. However, it is classified as a 'rare metals', because it is difficult to smelt. In particular, the primary titanium production process is highly energy-intensive. Recycling titanium scraps to produce ingots can reduce energy consumption and CO2 emissions by approximately 95 %. However, the amount of metal recycled from scrap remains limited of the difficulty in removing impurities such as iron and oxygen from the scrap. Generally, high-grade titanium and its alloy scraps are recycled by dilution with a virgin titanium sponge during the remelting process. Low-grade titanium scrap is recycled to ferrotitanium (cascade recycling). This paper provides an overview of titanium production and recycling processes.

An Experimental Study on The Application of Construction of Recycled Aggregate Concrete (재생골재 콘크리트의 구조체 적용성에 관한 실험적 연구)

  • 이상수;최민수;김진만;남상일;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.04a
    • /
    • pp.6-11
    • /
    • 1993
  • Due to depleting reserves and environmental pressures, the availability of "good" aggregates, , particularly in many urban areas, has decreased in recent years and from the viewpoint of energy and resources saving, it may be very advantageous to use waste concrete as construction materials. Therefore, this paper, an experimental study on the application in the construction of recycled aggregate concrete, is the experimental program and properties of fresh concrete to investigate general performance and workability of concretef concrete

  • PDF

Availability of SOFC systems equipped with a recycled steam reforming fuel processor (재순환수증기 연료개질형 SOFC시스템의 효용성 평가)

  • Oh, Jin-Suk;Jung, Chang-Sik;Park, Sang-Kyun;Kim, Myoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.569-573
    • /
    • 2016
  • Strengthened regulations for atmospheric emissions from ships have created a need for new and alternative power systems that offer low emissions and high energy efficiency. Recently, new types of propulsion power systems, such as fuel cell systems that use hydrogen as an energy source, have gained serious consideration in applications requiring emission control. The purpose of this work is to certify the availability of solid oxide fuel cell (SOFC) systems equipped with recycled steam reforming fuel processors, and to compare their performance with that of extra steam reforming systems. The results demonstrate that the recycled steam reforming system has a slightly lower cell voltage and higher energy efficiency than the extra steam reforming system.

Neutron Spectrum Effects on TRU Recycling in Pb-Bi Cooled Fast Reactor Core

  • Kim Yong Nam;Kim Jong Kyung;Park Won Seok
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.336-346
    • /
    • 2003
  • This study is intended to evaluate the dependency of TRU recycling characteristics on the neutron spectrum shift in a Pb-Bi cooled core. Considering two Pb-Bi cooled cores with the soft and the hard spectrum, respectively, various characteristics of the recycled core are carefully examined and compared with each other. Assuming very simplified fuel cycle management with the homogeneous and single region fuel loading, the burnup calculations are performed until the recycled core reached to the (quasi-) equilibrium state. The mechanism of TRU recycling toward the equilibrium is analyzed in terms of burnup reactivity and the isotopic compositions of TRU fuel. In the comparative analyses, the difference in the recycling behavior between the two cores is clarified. In addition, the basic safety characteristics of the recycled core are also discussed in terms of the Doppler coefficient, the coolant loss reactivity coefficient, and the effective delayed neutron fraction.