• Title/Summary/Keyword: recycled coarse aggregates

Search Result 131, Processing Time 0.026 seconds

Experimental Study on Flexural Behavior of Real Scale Reinforced Concrete Beams with Recycled Aggregates Replacement Ratios (순환골재 치환률에 따른 실물모형 철근콘크리트 보의 휨거동에 관한 실험적 연구)

  • Lee, Young-Oh;Yun, Hyun-Doo;You, Young-Chan;Bae, Ki-Sun;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.57-58
    • /
    • 2009
  • This paper reports experimental data on the structural performance of reinforced concrete beams with recycled aggregates. Reinforced concrete beams with recycled coarse aggregate and recycled sands were tested to evaluate their failure modes, flexural behavior and compared with a standard.

  • PDF

Effect of Replacement of 5~13mm Recycled Coarse Aggregates on Field Applicability of the Concrete through Mock-up Test (목업 시험을 통한 5~13mm 순환 굵은골재 치환 사용이 콘크리트의 현장적용성에 미치는 영향 고찰)

  • Han, Min-Cheol;Song, Young-Woo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2017
  • The objective of this paper is to investigate experimentally the effect of replacement of recycled coarse aggregates with 5~13mm in size on a field applicability of concretes through Mock-up test. Seven different mock-up specimens were prepared with the size of $1200{\times}800{\times}800mm$ simulating column and wall. For the concrete mixtures, 24MPa, 27MPa and 40MPa of nominal strength were adopted with 30% and 70%(only for 24MPa) of 5~13mm recycled coarse aggregate (RCA) replacement and without 5~13mm RCA(Plain). For test items, slump, slump flow, compressive strength with different curing conditions, core drilling, rebound numbers and drying shrinkage were measured. Test results indicated that 30% of 5~13 mm RCA replacement resulted in increase in slump, slump flow and resistance against segregation, while air contents decreased compared to those of plain mixture. Compressive strength of concrete with 30% of 5~13mm RCA was shown to be higher than that of plain mixture due to optimum packing effect associated with presence of well graded aggregates. Rebound number of the mock-up specimen with 30% of 5~13mm RCA had lower fluctuation according to hitting location than that of plain mock-up specimen. It is believed from the results of the study that replacement of 30% of 5~13mm RCA brings desirable improvement in various aspect of concrete performance due to associated dense packing effect.

Optimum Mix Proportion and Mechanical Properties of Rain Garden Structure Concrete using Recycled Coarse Aggregate, Hwang-Toh, Blast Furnace Slag and Jute Fiber (순환굵은골재, 황토, 고로슬래그 미분말 및 마섬유를 사용한 레인가든 구조물 콘크리트의 최적배합설계 및 역학적 특성)

  • Kim, Dong-Hyun;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.25-33
    • /
    • 2013
  • In this study, the optimum mix proportions of rain garden structure concrete were decided and the mechanical properties were evaluated. Experimental parameters were blast furnace slag, hwang-toh, recycled aggregates and natural jute fibers. The target compressive strength and chloride ion penetration were more than 24 MPa and less than 1000 coulombs, respectively. The response surface method was used for statistical optimization of experimental results. The optimal mixing ratios of the blast furnace slag, hwang-toh, recycled coarse aggregate and jute fiber volume fraction were determined 59.98 %, 8.74 %, 12.12 % and 0.2 %, respectively. The compressive strength, flexural strength and chloride ion penetration test results of optimum mix ratio showed that the 24.56 MPa, 3.88 MPa and 999.08 columbs, respectively.

A Study on the Property Estimation of Recycled Coarse Aggregate and Characteristic of Recycled Aggregate Concrete Using the Surface Coated Treatment Method (표면처리방법을 이용한 순환 굵은골재의 물성 평가 및 순환골재 콘크리트의 특성 연구)

  • Kim, Nam Wook;Kim, Hyeok Jung;Bae, Ju Seong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.603-609
    • /
    • 2008
  • The recycled aggregates which were produced from the waste concretes have the disadvantages of inferior properties for natural aggregate. Therefore, in order to reuse the recycled aggregate it must be solved to improve the quality of recycled aggregate. In this study, the quality of recycled aggregate was improved by the surface treatment method using the colloidal silica solution. And, in order to examine the possibility of reusing the surface coated recycled aggregate in constructing concrete structures, we studied the mechanical properties and durability of the concrete using the surface coated recycled aggregates and the other concrete.

Research on Design Mixing and Manufacturing of Recycled Aggregate for Concrete and Coarse Aggregate of Steelmaking Slag (콘크리트용 순환골재와 제강슬래그의 굵은골재 설계배합 및 제조에 관한 연구)

  • Jong-Gil Kim;Seung-Tae Lee;Tae-Han Kown
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.341-348
    • /
    • 2023
  • In this study, in order to minimize the increase in the amount of various industrial by-products due to the rapid growth of the industry and the intensification of the depletion of natural aggregate resources, the material test using recycled aggregate and steelmaking slag and the proper mixing ratio of recycled concrete were to be derived. In this study, first, the conformity of the quality standards of the materials used in the field was confirmed, and the workability and molding results were shown when used alone or mixed. Therefore, the feasibility of application as aggregate for concrete was evaluated through a total of 4-type mixtures of cement types, admixtures, coarse aggregates, and fine aggregates. As a result of the experiment, it was confirmed that the slump of unhardened concrete, the amount of air, chloride and compressive strength of hardened concrete according to the replacement rate were different from the measured values of general concrete quality characteristics. According to this, it was confirmed that the quality characteristics of the standard design criteria were satisfied.

Confinement Effect of Recycled Coarse Aggregate Concrete (순환 굵은 골재 콘크리트의 횡구속 효과)

  • Jung, Chang-Kyo;Kim, Do-Jin;Lee, Sun-Hee;Kim, Young-Sik;Kim, Sang-Woo;Kim, Kil-Hee
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.91-92
    • /
    • 2010
  • This paper is experimental study on the confinement effect of concrete using recycled coarse aggregates confined by steel spirals. The experimental results indicated that confinement effect of recycled aggregate concrete was similar to that of natural aggregate concrete ones.

  • PDF

A Study on Improvement for Freeze and Thaw Durability of Concrete Using Recycled Coarse Aggregate (재생굵은골재 사용 콘크리트의 내동해성 향상을 위한 연구)

  • 김용직;문한영;문대중
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.643-648
    • /
    • 2002
  • A research for recycling the demolished-concrete as concrete aggregate has been concerned in all over the world. There, however, are some problems that qualities of recycled aggregates are not only largely different, but also mechanical properties of recycled aggregate concrete decrease a little in comparison with that of natural aggregate concrete. In this study, the resistance of freezing and thawing of concrete using source-concrete recycled aggregate(SRN) and demolished-concrete recycled aggregate(DRA) was investigated. Futhermore a research for improvement of freeze and thaw durability of recycled aggregate concrete was performed. Relative dynamic modulus of elasticity of SRN and DRA recycled aggregate concrete was dropped 60% before 150 of freezing and thawing cycle, and was much lower than that of control concrete. Relative dynamic modulus of elasticity of recycled aggregate concrete was increased to decrease water-cement ratio, but the freeze and thaw durability of recycled aggregate concrete was not enough improved. Futhermore, when metakaolin and silica fume were repalced, the freeze and thaw durability of recycled aggregate concrete containg metakaolin was more improved than that of silica fume.

  • PDF

An Experimental Study on Recycled Aggregate Concrete for Artificial Fishing Reefs (인공어초 개발을 위한 재생골재 콘크리트의 실험적 연구)

  • 홍종현;김문훈;우광성
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.16-22
    • /
    • 2003
  • The mechanical characteristics of newly recycled aggregate concrete on the basis of the proposed mix design model have been studied to develop the precast artificial fishing reefs. In the first task, the experimental test for the recycled aggregates taken from Jeju Island has been carried out to verify the material properties in terms of specific gravity, percentage of solids, absorption and abrasion of coarse aggregates. In the second task, the experimental parameters of newly recycled aggregate concrete are investigated to meet with the requirements of guidelines with respect to slump, unit weight, pH, ultrasonic velocity, void ratio, and compressive strength which are made of sea-shore sand ad slag cement. The natural aggregate and polypropylene fiber are added to newly recycled aggregate concrete to improve the compressive strength and quality. The optimal mix proportions for compressive strength are W/C=30%, S/a=15%, NA/G=50% in porous concrete case, W/C=40%, S/a=45% in plain concrete case, and W/C=40%, S/a-45%, PF=1.0kg/㎥ in fiber reinforced concrete case.

An Experimental Study on the Compressive Strength Property of Concrete with Ground granulated Blast Furnace Slag Using Wash Water from Recycled Aggregates (순환골재 세척수를 혼입한 고로슬래그 콘크리트의 압축강도 특성에 관한 실험적 연구)

  • Jung, Sang-Kyung;Shin, Sang-Yeop;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.34-35
    • /
    • 2015
  • The purpose of this study is to investigate the compressive strength property of concrete with Ground granulated blast furnace slag(GBFS) using wash water from recycled aggregate. When GBFS is reacted with water, it doesn't happen to hydraulic reaction but GBFS becomes latent hydraulic property in alkaline environment. For this reason, if it is possible to use wash water from recycled coarse aggregate as mixture water, GBFS have the advantage of early strength due to effect of activation. We investigated the compressive strength properties of GBFS concrete using wash water from recycled aggregate. According to the experimentation result, ICP-OES showed wash water from recycled coarse aggregate has a high alkali value of pH of 12. Also, compressive strength in early age using wash water can be improved as an activation.

  • PDF

Structural Performance Evaluation of Steel Fiber-Reinforced Concrete Beams with Recycled Coarse Aggregates (순환골재를 사용한 강섬유보강 콘크리트보의 구조 성능 평가)

  • Shin, Jae-Lin;Kim, Woo-Suk;Baek, Seung-Min;Kang, Thomas H.-K.;Kwak, Yoon-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.215-227
    • /
    • 2015
  • In this study, twenty four steel-fiber reinforced concrete (SFRC) beams using recycled coarse aggregates (RCA) were manufactured to examine the shear behavior of SFRC and to determine the beams' ultimate shear strengths. The RCA replacement ratio was fixed at 30%. The variables studied in this investigation are: (1) shear span-to-depth ratios (a/d) of 2, 3 and 4; (2) longitudinal reinforcement ratio (${\rho}$) of 0.008 and 0.0127; and (3) steel fiber volume fractions ($V_f$) of 0, 0.5, 0.75 and 1%. Test results were analyzed and then compared with the findings and proposals of various other researchers. Based on the test results, the more steel fiber volume fraction is increased, the large crack resistance and shear strength are exhibited. Most of the experimental data is higher than the theoretical value. Therefore, steel-fiber reinforced concrete beams using recycled coarse aggregates are suggested to be applied for building structures.