• Title/Summary/Keyword: recycled PET nonwoven

Search Result 2, Processing Time 0.014 seconds

Development of High-insulation Packaging using Recycled PET and Comparison of Insulation Performance with Existing Styrofoam and Paper Boxes (재생페트를 이용한 고단열 패키징 개발과 기존의 스티로폼 및 종이 박스와의 단열성능 비교)

  • Ryu, Jae Ryong;Yook, Se Won;Kal, Seung Hoon;Shin, YangJae
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.111-116
    • /
    • 2019
  • Thermal insulation performance of new insulation packaging made of recycled PET nonwoven (thickness : 10 mm) was verified by conducting comparative experiment with an EPS box (thickness : 25 mm) and a double wall corrugated box (thickness : 7 mm). Three ice packs (300 g) were positioned 200 mm above the bottom inside each box, all of which are placed side by side and temperature change of 2 points (5mm under middle icepack and 130 mm under middle icepack) was recorded by data logger (GL-840, Graphtec) for 16 hours under the environment of 29℃. The new packaging box showed 75% higher insulation performance than the EPS box and 180% higher than the corrugated box. In order to figure out the reason for insulation performance difference among boxes, thermal conductivities of each box material were measured using heat flow meter (HFM436 lamda, Netzsch). U-value (thermal conductivity divided by thickness) of EPS was lower than recycled pet nonwoven by 57%, which seemed to be opposite to the result of insulation test of boxes. This was explained by high water vapor transmission rate of EPS (6 times higher than PET insulation) and air pocket effect of PET insulation.

Evaluation on stability of scour countermeasures using geobag and recycled aggregates (재생골재를 활용한 지오백 세굴보호공법의 안정성 평가)

  • Lee, Ju-Hyung;Park, Jae-Hyun;Chung, Moon-Kyung;Kwak, Ki-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.233-244
    • /
    • 2009
  • A new bridge scour countermeasure using geobags and recycled aggregates which is more stable and economical than existing methods is proposed, and its stability was verified through material tests. PP short staple nonwoven geotextile and PET long staple nonwoven geotextile produced in Korea were selected, and a series of strength tests and a test of hydraulic characteristics were conducted to determine a suitable geotextile for geobags. A series of leaching test was also conducted to assess the potential environmental risk of recycled concrete produced in Korea when it is utilized as a material for protecting bridge piers against scour.

  • PDF