• 제목/요약/키워드: recurrent neural network

검색결과 583건 처리시간 0.019초

하이브리드형 무인 항공 전자탐사시스템 자료의 분석 및 해석기술 개발 (Development of Data Analysis and Interpretation Methods for a Hybrid-type Unmanned Aircraft Electromagnetic System)

  • 김영수;강현우;방민규;설순지;김보나
    • 지구물리와물리탐사
    • /
    • 제25권1호
    • /
    • pp.26-37
    • /
    • 2022
  • 최근의 정보기술발달에 힘입어 소형 무인 비행체를 활용한 각종 물리탐사 방법들이 제안되고 그 해석방법들에 대한 연구가 소개되고 있다. 이 연구에서는 한국지질자원연구원에서 개발 중인 송수신 분리형 무인 항공 전자탐사 장비를 소개하고 획득한 자료의 타당성 검증을 위해 수행된 시험자료를 분석하여 해석하는 방법을 제안하는 연구를 수행하였다. 특히, 수신기가 드론에 매달린 채로 탐사가 수행되기 때문에 발생되는 흔들림 성분의 영향을 고찰하고 회전변환을 이용하여 보정하였다. 한편, 비행체에 의한 탐사는 송수신기 간의 거리, 고도 등 여러 탐사 변수들이 실시간으로 변하게 되고 획득한 자료는 지상 탐사보다 더 많은 잡음을 포함하게 되어 전통적인 해석방법으로의 해석에 많은 어려움이 따른다. 따라서, 이 연구에서는 획득한 전자탐사자료를 이용하여 빠르게 겉보기 비저항을 예측할 수 있는 순환 인공 신경망 모델을 구축하였으며, 현장자료의 분석을 통해 얻어진 잡음들을 수치모델링을 통해 생성한 학습자료에 포함시켜 잡음이 포함된 자료의 예측성능을 향상시켰다. 학습된 순환 신경망 모델을 시험탐사 현장자료에 적용시킨 결과 지상탐사 및 전기비저항 탐사 결과와 유사한 겉보기 비저항을 예측함을 확인하였다.

초 장단기 통합 태양광 발전량 예측 기법 (Very Short- and Long-Term Prediction Method for Solar Power)

  • 윤문섭;임세령;장한승
    • 한국전자통신학회논문지
    • /
    • 제18권6호
    • /
    • pp.1143-1150
    • /
    • 2023
  • 세계적 기후 위기와 저탄소 정책 이행으로 신재생 에너지에 관한 관심이 높아지고 이와 관련된 산업이 증가하고 있다. 이 중에서 태양 에너지는 고갈되지 않고 오염 물질이나 온실가스를 배출하지 않는 대표적인 친환경 에너지로 주목받고 있으며, 이에 따라 세계적으로 태양광 발전 시설 보급이 증가하고 있다. 하지만 태양광 발전은 지리, 날씨와 같은 환경의 영향을 받기 쉬우므로 안정적인 운영과 효율적인 관리를 위해 정확한 발전량 예측이 중요하다. 하지만 변동성이 큰 태양광 발전을 수학적 통계 기술로 정확한 발전량을 예측하는 것은 불가능하다. 이를 위해서 정확하고 효과적인 예측을 위해 딥러닝 기반의 기술에 관한 연구는 필수적이다. 또한, 기존의 딥러닝을 활용한 예측 방식은 장, 단기적인 예측을 나누어 수행하기 때문에 각각의 예측 결과를 얻기 위한 시간이 길어진다는 단점이 있다. 따라서, 본 연구에서는 시계열 특성을 가진 태양광 발전량 데이터를 사용하여 장단기 통합 예측을 수행하기 위해 순환 신경망의 다대다 구조를 활용한다. 그리고 이를 다양한 딥러닝 모델들에 적용하여 학습을 수행하고 각 모델의 결과를 비교·분석한다.

미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용 (Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration)

  • 김영광;김복주;안성만
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.329-352
    • /
    • 2022
  • 미세먼지는 폐나 혈관에 침투해 각종 심장 질환이나 폐암 등의 호흡기 질환을 일으키는 것으로 보고되고 있다. 지하철은 일 평균 천만 명이 이용하는 교통수단으로, 깨끗하고 쾌적한 환경조성이 중요하나 지하터널을 통과하는 지하철의 운행 특성과 터널에 갇힌 미세먼지가 열차 풍으로 인해 지하역사로 이동하는 등의 문제로 지하역사의 미세먼지 오염도는 높은 것으로 나타나고 있다. 환경부와 서울시는 지하역사 공기질 개선대책을 수립하여 다양한 미세먼지 저감 노력을 기울이고 있다. 스마트 공기질 관리 시스템은 공기질 데이터 수집 및 미세먼지 농도를 예측하여 공기질을 관리하는 시스템으로 미세먼지 농도 예측 모델이 중요한 구성 요소이다. 그동안 시계열 데이터 예측에 관한 다양한 연구가 진행되어왔지만, 지하철 역사의 미세먼지 농도 예측과 관련해서는 통계나 순환신경망 기반의 딥러닝 모델 연구에 국한되어 있다. 이에 본 연구에서는 시공간 트랜스포머를 포함한 4개의 트랜스포머 기반 모델을 제안한다. 서울시 지하철 역사의 대합실을 대상으로 한 시간 후의 미세먼지 농도 예측실험을 수행한 결과, 트랜스포머 기반 모델들의 성능이 기존의 ARIMA, LSTM, Seq2Seq 모델들에 비해 우수한 성능을 나타냄을 확인하였다. 트랜스포머 기반 모델 중에서는 시공간 트랜스포머의 성능이 가장 우수하였다. 데이터 기반의 예측을 통하여 운영되는 스마트 공기질 관리 시스템은 미세먼지 예측의 정확도가 향상될수록 더욱더 효과적이고 에너지 효율적으로 운영될 수 있다. 본 연구 결과는 스마트 공기질 관리 시스템의 효율적 운영에 기여할 수 있을 것으로 기대된다.