• Title/Summary/Keyword: rectangular tank

Search Result 162, Processing Time 0.039 seconds

Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider

  • Javaid, Muhammad Yasar;Ovinis, Mark;Hashim, Fakhruldin B.M.;Maimun, Adi;Ahmed, Yasser M.;Ullah, Barkat
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.4
    • /
    • pp.382-389
    • /
    • 2017
  • We are developing a prototype underwater glider for subsea payload delivery. The idea is to use a glider to deliver payloads for subsea installations. In this type of application, the hydrodynamic forces and dynamic stability of the glider is of particular importance, as it has implications on the glider's endurance and operation. In this work, the effect of two different wing forms, rectangular and tapered, on the hydrodynamic characteristics and dynamic stability of the glider were investigated, to determine the optimal wing form. To determine the hydrodynamic characteristics, tow tank resistance tests were carried out using a model fitted alternately with a rectangular wing and tapered wing. Steady-state CFD analysis was conducted using the hydrodynamic coefficients obtained from the tests, to obtain the lift, drag and hydrodynamic derivatives at different angular velocities. The results show that the rectangular wing provides larger lift forces but with a reduced stability envelope. Conversely, the tapered wing exhibits lower lift force but improved dynamic stability.

An Experimental Study on Characteristics of Heat Flow in the Cylindrical Storage Tank with Ice Ball (Ice Ball을 내장(內裝)한 빙축열조내(氷蓄熱槽內)의 열유동(熱流動) 특성(特性)에 관한 실험적(實驗的) 연구(硏究))

  • Jang, Y.G.;Lee, W.S.;Pak, J.W.
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.99-109
    • /
    • 1998
  • The study on ice thermal storage system is to improve total system performance in actual air-conditioning facilities. To attain the high efficiencies in ice thermal storage system, the improvement of thermal stratification is essential, therfore the process flow must be piston flow in thermal storage tank. Ice packing factor is better on condition that the inflowing temperature is low, the flow direction in the thermal storage is upward and the cylindericalthermal storage type is used. This result shows that the cylinderical ice storage tank has better storage capacity than the rectangular type in case of the same porocity.

  • PDF

Experimental Study on the Eddy Making Damping Effect at the Roll Motion of a Rectangular Barge (사각형 바지선의 횡동요 와류 감쇠에 대한 실험적 연구)

  • Jung, Kwang-Hyo;Suh, Sung-Bu;Chun, Ho-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.3 s.153
    • /
    • pp.267-278
    • /
    • 2007
  • This experimental study investigated on the eddy making effect on the roll motion of a rectangular barge in a two-dimensional wave tank. The structure was used to simulate a simplified rectangular barge in the beam sea condition. The structure with a draft one half of its height was hinged at the center of gravity and free to roll by waves. The rectangular barge was tested with regular waves with a range of wave periods that are shorter, equal to, and longer than its roll natural period. Particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The coupled interactions between the incident wave and the barge were demonstrated by examining the vortical flow fields to elucidate the eddy making effect during the roll motion. For incoming wave with a wave period same as the roll natural period, the barge roll motion was reduced by the eddy making damping effect. At the wave period shorter than the roll natural period, the structure roll motion was slightly reduced by the vertical flow around the barge. However, at the wave period longer than the roll natural period, the eddy making effect due to flow separation at structure corners indeed amplifies the roll motion. This indicates that not only can the eddy making effect damp out the roll motion, it can also increase the roll motion.

An experimental study on thermal storage characteristics in the thermally stratified water storage system (성층 축열 시스템에서의 열 저장 특성에 관한 실험적 연구)

  • Koh, J.Y.;Kim, Y.K.;Lee, C.M.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.4
    • /
    • pp.37-46
    • /
    • 2001
  • This study describes the experimental study that focuses on the effects that distributor shapes and flow rate variations have an influence on the stratification in a rectangular thermal storage tank. Experiments were carried out under the conditions that the flow rates of working fluid are 20, 10 and $5\ell$/min. The storage tank is initially filled with chilled water of $1^{\circ}C$, and is extracted through the bottom at the same rate as the return warm water from load is entered through the distributor at the top of the tank. The thermo-cline forms at the top of the storage tank as the warm water enters the tank from the load through the distributor and the thermo-cline thickness increases with time. Emphasis is given to the effects of mixing at the inlet that increases the thermo-cline decay Flow rate variation and inlet distributor shapes are the important parameters in deciding the performance of a storage system. Stratification degree increases with decreasing in inlet flow rate under $10\ell$/min. Experiments shows that better thermal stratification can be obtain using the distributor to limit momentum mixing at the inlets and outlets. Also, 12% of improvement in the thermal energy usage has been achieved using the modified distributor discharging same flow rate in each lateral ports.

  • PDF

Estimation of Dynamic Properties of Steel Liquid Storage Tank by Shaking Table Test (진동대 실험에 의한 강재 액체저장탱크의 동특성 분석)

  • Choi, Hyoung Suk;Park, Dong Uk;Kim, Sung Wan;Kim, Jae Min;Baek, Eun Rim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.153-161
    • /
    • 2017
  • Liquid storage tank is one of the major infrastructures and generally used to store gases, drinking and utilizing water, dangerous fluids, fire water and so on. According to the recent reports and experiences, the tank structures are damaged in many earthquakes due to their low energy dissipating capacity. Therefore, many researchers have been tried to know the dynamic properties of the tanks including liquids. However, vary limited experimental studies are carried out using relatively small tank models. In this study, a series of shaking table tests are performed with maximum 2 m cubic rectangular liquid storage tanks made of steel to measure the natural frequency and estimate damping coefficient of impulsive and convective mode of the tanks. Especially, the damping values under different shapes and excitation methods are estimated by logarithmic decrement method and half power band-pass method and compared with current design code and standards such as ASCE 7, Eurocode 8 and NZS. Test results show that the impulsive mode damping is around 2% which is proposed by general standards and codes but the impulsive mode damping is 0.13% average that is slightly lower than the code recommendation.

Motion and Sloshing Analysis for New Concept of Offshore Storage Unit

  • Ha, Mun-Keun;Kim, Mun-Sung;Paik, Bu-Keun;Park, Chung-Hum
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.22-28
    • /
    • 2002
  • A New concept for the LNG-FPSO ship, with moonpool and bilge step in bottom, is proposed. This concept is investigated with regard to motion reduction and sloshing phenomena of the cargo and operation tanks. The principal dimensions of the ship are $L\timesb B\times D\times t(design)=270.0\times51.0\times32.32\times13.7(m)$, with a total cargo capacity of 161KT; a 98% loading condition is considered for this study. The moonpools and rectangular step at the bilge have been designed for the purpose of decreasing the motion within the tank. For the motion analysis, linearized three-dimensional diffraction theory, with the simplified boundary condition was used. The six-degree of freedom coupled motion responses were calculated for the LNG-FPSO ship. Viscous effects on the roll motion responses of a vessel were taken into account in this calculation program, using an empirical formula suggested by Himeno(1981). The case study for the moonpool size has been conducted using theoretical estimation and the experimental method. For the optimization of the moonpool size and effect of the bilge step, 9 cases of its size, both with and without bilge step, were involved in the study. no motion responses, especially roll motion, for the designed LNG-FPSO ships are much lower than those of other drill ships and shuttle tankers. The limit criterions are satisfied. To check the cargo tank and operation tank sizes, we performed a sloshing analysis in the irregular waves which focuses on the pressure distribution on the tank wall and the time history of pressure and free surface for No.2 and 5 tanks of LNG-FPSO with chamfers. Finally, optimum tank sire was estimated.

  • PDF

Study of Sloshing Flow in a Rectangular Tank (사각용기의 슬로싱 유동에 관한 연구)

  • Ji, Young-Moo;Shin, Young-Seop;Park, Jun-Sang;Hyun, Jae-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.6
    • /
    • pp.617-624
    • /
    • 2011
  • The two-dimensional sloshing problem in a rigid rectangular tank with a free surface is considered. The flow is generated by a container in harmonic motion in time along the horizontal axis, i.e., a container excited by u=Asin($2{\pi}ft$) where u denotes the container velocity imposed externally, A is the amplitude of the oscillation velocity, and f is the frequency of oscillation. Experimental apparatus is arranged to investigate the large-amplitude sloshing flows in off-resonant conditions, where the large amplitude means that A~O(1), and the distance, S, is comparable to the breadth, L, of the container, i.e., L/S~O(1). Comprehensive particle image velocimetry (PIV) data are obtained, which show that the flow physics of the nonlinear off-resonant sloshing problem can be characterized into three peculiar free surface motions: standing-wave motions similar to those of linear sloshing, a run-up phenomenon along the vertical sidewall at the moment of turn-over of the container, and gradually propagating bore motion from the sidewall to the interior fluid region, like a hydraulic jump.

Analysis of Sloshing Frequency Response in Rectangular Fuel-Storage Tank (사각형 연료탱크 내 슬로싱 주파수 응답 해석)

  • 조진래;이홍우;하세윤;박태학;이우용
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.1
    • /
    • pp.95-104
    • /
    • 2003
  • This paper deals with the analytic and FEM analyses of sloshing frequency response of incompressible, invicid and irrotational flow in two dimensional rectangular tank. We use Laplace equation based on potential theory as governing equation. For small amplitude sloshing motion, the linearized free surface condition was applied and the analytic solution as obtained by the separation of variables. To simulate the effect of the energy dissipation due to viscous damping, artificial viscous coefficient is introduced and the divergence of response at resonance frequencies may be avoided by this coefficient. This problem was solved by FEM using 9-node elements in order to predict the maximum amplitude of sloshing response. Numerical results of free surface height, fluid pressure and fluid force show good agreement with those by analytic solution. After verifying the test FEM program, we analyze the frequency response characteristics of sloshing to the fluid height.