• Title/Summary/Keyword: rectangular cross-section

Search Result 304, Processing Time 0.023 seconds

Moment-Curvature Relationship of RC Structural Walls with Confined Boundary Elements Using Pre-Fabricated Rectangular Continuous Hoops (사각 연속횡보강 선조립철근으로 단부횡보강된 RC 구조벽체의 모멘트-곡률 관계)

  • Kim, Hui-Do;Lee, Seung-Hyun;Cho, Jae-Hui;Kim, Sung-Hyun;Kang, Su-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.45-55
    • /
    • 2022
  • Because boundary confinement details proposed in the current design standards are significantly inferior in workability and production quality, it is necessary to develop boundary confinement details of RC structural walls that are capable of ensuring seismic performance and workability. With the recent development of the wire rod manufacturing technology, various pre-fabricated continuous hoop details can be manufactured. In this study, an analysis was conducted on the moment-curvature relationship of RC structural walls to which the pre-fabricated continuous hoop details were applied. According to the nonlinear cross-section analysis, the RC structure wall to which the details of the pre-fabricated continuous hoop details are applied can ensure seismic performance as the area of the pre-fabricated continuous hoop increases. Based on these research results, when applying the pre-fabricated continuous hoop in detail, it is necessary to secure the area of the pre-fabricated continuous hoop as much as the area of the existing boundary confinement.

Interstitial Hyperthermia by Radiofrequency Needle Electrode System : Phantom and Canine Brain Studies (8 MHz 라디오파를 이용한 자입식 온열치료 -조직등가물질을 통한 온도분포 및 개 뇌실질의 조직병리 변화에 관한 연구-)

  • Lee, Hyung-Sik;Chu, Sung-Sil;Sung, Jin-Sil;Suh, Chang-Ok;Kim, Gwi-Eon;Loh-John-Juhn-Kyu;Kim, Young-Soo;Kim, Sun-Ho;Chung, Song-Sup;Han, Eun-Kyung;Kim, Tae-Seung
    • Radiation Oncology Journal
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1991
  • An interstitial radiofrequency needle electrode system was constructed for interstitial heating of brain tissue. Radiofrequency electrodes with Thermotron RF 8 were tested in an agar phantom and in a normal canine brain to determine how variations in physical factors affected temperature distributions. Temperature distributions were checked after heating with 1 mm diameter needle electrode implants on the corners of 1 and 2 cm squares in a phantom and plot isotherms for various electrodes arrangement. We observed that the 1 cm square array would heat a volume with a 1.25 cm radius circular field cross section to therapeutic temperatures ($90\%$ relative SAR using Tm) and the 2 cm square array with a 1.75 cm radius rectangular field with central inhomogeneity. With 2 cm long electrode implants, we observed that the 1 cm square array would heat a 3 cm long sagittal section to therapeutic temperature ($90\%$ relative SAR using Tm). We found that radiofrequency electrodes could be selected to match the length of the heating area without affecting its performance. The histopathological changes associated with RF heating of normal canine brains have been correlated with thermal distributions. RF needle electrode heating was applied for 50min to generate tissue temperatures of $43^{\circ}C$. We obtained a quarter of the heated tissue material immediately after heating and sacrificed at intervals from $7\sim30$days. The acute stage (immediately after heating) was demonstrated by liquefactive necrosis, pyknosis of neuronal element in the gray matter and by some polymer-phonuclear leukocytes infiltration. The appearance of lipid-laden macrophages surrounding the area of liquefaction necrosis was demonstrated in all three sacrificed dogs. Mild gliosis occurring around the necrosis was demonstrated in the last sacrificed (Days 30) canine brain.

  • PDF

Accuracy evaluation of microwave water surface current meter for measurement angles in middle flow condition (전자파표면유속계의 측정 각도에 따른 평수기 유속 측정 정확도 분석)

  • Son, Geunsoo;Kim, Dongsu;Kim, Kyungdong;Kim, Jongmin
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Streamflow discharge as a fundamental riverine quantity plays a crucial role in water resources management, thereby requiring accurate in-situ measurement. Recent advances in instrumentations for the streamflow discharge measurement has complemented or substituted classical devices and methods. Among various potential methods, surface current meter using microwave has increasingly begun to be applied not only for flood but also normal flow discharge measurement, remotely and safely enabling practitioners to measure flow velocity postulating indirect contact. With minimized field preparedness, this method facilitated and eased flood discharge measurement in the difficult in-situ conditions such as extreme flood in active ways emitting 24.125 GHz microwave without relying on natural lights. In South Korea, a rectangular shaped instrument named with Microwave Water Surface Current Meter (MWSCM) has been developed and commercially released around 2010, in which domestic agencies charging on streamflow observation shed lights on this approach regarding it as a potential substitute. Considering this brand-new device highlighted for efficient flow measurement, however, there has been few noticeable efforts in systematic and comprehensive evaluation of its performance in various measurement and riverine conditions that lead to lack in imminent and widely spreading usages in practices. This study attempted to evaluate the MWSCM in terms of instrumen's monitoring configuration particularly regarding tilt and yaw angle. In the middle of pointing the measurement spot in a given cross-section, the observation campaign inevitably poses accuracy issues related with different tilt and yaw angles of the instrument, which can be a conventionally major source of errors for this type of instrument. Focusing on the perspective of instrument configuration, the instrument was tested in a controlled outdoor river channel located in KICT River Experiment Center with a fixed flow condition of around 1 m/s flow speed with steady flow supply, 6 m of channel width, and less than 1 m of shallow flow depth, where the detailed velocity measurements with SonTek micro-ADV was used for validation. As results, less than 15 degree in tilting angle generated much higher deviation, and higher yawing angle proportionally increased coefficient of variance. Yaw angles affected accuracy in terms of measurement area.

Development of Optimum Grip System in Developing Design Tensile Strength of GFRP Rebars (GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발)

  • You Young-Chan;Park Ji-Sun;You Young-Jun;Park Young-Hwan;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.947-953
    • /
    • 2005
  • Previous test results showed that the current ASTM(American Standard for Testing and Materials) grip adapter for GFRP(Glass Fiber Reinforced Polymer) rebar was not fully successful in developing the design tensile strength of GFRP rebars with reasonable accuracy. It is because the current ASTM grip adapter which is composed of a pair of rectangular metal blocks of which inner faces are grooved along the longitudinal direction does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The objective of this paper is to provide how to proportion the optimum diameter of inner groove in ASTM grip adapter to develop design tensile strength of GFRP rebar. The proportioning of inner groove in ASTM grip adapter is based on the force equilibrium of GFRP rebar between tensile capacity and minimum frictional resistance required along the grip adapter. The frictional resistance of grip adapter is calculated based on the compressive strain compatibility in radial direction induced by the difference between diameter of GFRP rebar and inner groove In ASTM grip. All testing procedures were made according to the CSA S806-02 recommendations. From the preliminary test results on round-type GFRP rebars, it was found that maximum tensile loads acquired under the same testing conditions is highly affected by the diameter of inner groove in ASTM grip adapter. The grip adapter with specific dimension proportioned by proposed method recorded the highest tensile strength among them.