• Title/Summary/Keyword: rectangular concrete tank

Search Result 4, Processing Time 0.015 seconds

Seismic behavior of three dimensional concrete rectangular containers including sloshing effects

  • Mirzabozorg, H.;Hariri-Ardebili, M.A.;Nateghi A., R.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.79-98
    • /
    • 2012
  • In the present paper, the three-dimensional model of a typical rectangular concrete tank is excited using an artificial and a natural three components earthquake ground motion and the staggered displacement method is utilized for solving the coupled problem of the tank-contained liquid system in time domain. In the proposed method, surface sloshing of the liquid is taken into account in addition to the impulsive term and the appropriate damping values are applied on both of them. The resulted responses are compared with those obtained from the ABAQUS finite element software. It is found that the convective term affects responses extensively and must be considered in seismic design/safety assessment of storage tanks. In addition, the utilized method for solving the coupled problem is stable during the conducted general dynamic analyses and is able to capture the expected phenomena.

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.

Prediction of Fatigue Life for a 270,000 kl LNG Storage Tank According to Shape of Corner-protection Knuckle (너클 형상에 따른 LNG 저장탱크 코너프로텍션 피로수명 예측)

  • Lee, Seung Rim;Lee, Kyong Min;Kim, Han Sang
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.69-72
    • /
    • 2014
  • If LNG is leaked from 9% Ni steel inner tank by damage, LNG is retained by outer concrete tank. Then large tensile stress can be caused at cylindrical bottom of outer tank by temperature difference between outer and inner surface of outer tank. Therefore, in order to reduce the tensile stress is caused by temperature difference, corner-protection is installed with insulation and 9% Ni steel as a second barrier. In this paper, using finite element method, structural analysis was performed for rectangular and circular shape of knuckle and based on the results, fatigue life of welds of corner protection was predicted. As a consequence of structural analysis, safety factor of circular knuckle shows 33% bigger than rectangular one shows, and circular knuckle has 25% bigger fatigue life time than rectangle has. These results can be applied to life time assessment and design optimization in the future.

Role of membrane forces in seismic design of reinforced concrete liquid storage structures

  • Schnobrich, W.C.
    • Structural Engineering and Mechanics
    • /
    • v.10 no.6
    • /
    • pp.533-543
    • /
    • 2000
  • To prevent major cracking and failure during earthquakes, it is important to design reinforced concrete liquid storage structures, such as water and fuel storage tanks, properly for the hydrodynamic pressure loads caused by seismic excitations. There is a discussion in recent Codes that most of the base shear applied to liquid containment structures is resisted by inplane membrane shear rather than by transverse flexural shear. The purpose of this paper is to underline the importance of the membrane force system in carrying the base shear produced by hydrodynamic pressures in both rectangular and cylindrical tank structures. Only rigid tanks constrained at the base are considered. Analysis is performed for both tall and broad tanks to compare their behavior under seismic excitation. Efforts are made to quantify the percentage of base shear carried by membrane action and the consequent procedures that must be followed for safe design of liquid containing storage structures.