• Title/Summary/Keyword: recovery of heavy metals

Search Result 97, Processing Time 0.027 seconds

Recycling of chelating agents after extraction of heavy metals contaminated in soil

  • Jung, Oh-Jin
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.10 no.S_3
    • /
    • pp.139-148
    • /
    • 2001
  • Heavy metals such as Cu, Ni, Cd, and Pb were chemically extract from the contaminated soils using the chelating agents, EDTA and DTPA. These chemical extraction have been focused on its applicability to a wide range of soils. Results of extractive efficiency for heavy metal follow the order : Cu-EDTA $\geq$ Ni-EDTA > Pb-EDTA > Cd-EDTA > Cu-DTPA> Pb-DTPA. This result is coincided with order of conditional formation constants(Kr) of metal-chelate agent. The second study involved the recovery of the metals and EDTA from complex solutions by an electromembrane process. The overall processes of regeneration, recovery, and reuse were evaluated. The electrochemical studies showed that copper could be chosen as an electrode to plate Cd, Cu, and Pb. At least 95% of 75 of EDTA and associated Cu or Pb could be recovered by the electromembrane process. Recovery of Cd by electodeposition was not possible with the copper electrode. The percent EDTA recovery is equal to the percentage of metal electroplated from the chelates.

  • PDF

Porous polymer membranes used for wastewater treatment

  • Melita, Larisa;Gumrah, Fevzi;Amareanu, Marin
    • Membrane and Water Treatment
    • /
    • v.5 no.2
    • /
    • pp.147-170
    • /
    • 2014
  • This paper focuses on the study of the most recent ultra-filtration techniques, based on porous polymer membranes, used for the treatment of wastewater from oil, mine and hydrometallurgical industries. The performance of porous membranes used in separation and recovery of oil and heavy metals from wastewater, was evaluated by the polymer composition and by the membrane characteristics, as it follows: hydrophobicity or hydrophilicity, porosity, carrier (composition and concentration), selectivity, fouling, durability, separation efficiency and operating conditions. The oil/water efficient separation was observed on ultra-filtration (UF) techniques, with porous membranes, whereas heavy metals recovery from wastewater was observed using porous membranes with carrier. It can be concluded, that in the ultra-filtration wastewater treatments, a hybrid system, with porous polymer membranes with or without carrier, can be used for these two applications: oil/water separation and heavy metals recovery.

Determination of heavy metals in mainstream smoke by ORS-ICP-MS (ORS-ICP-MS를 이용한 담배 연기의 중금속 성분 분석)

  • Cho, Sung-Eel;Ji, Sang-Un;Hwang, Keon-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • In this study, we compared three different pretreatment methods, such as block digestion, microwave digestion and solvent injection, coupled with Octopole Reaction System(ORS)-ICP-MS was used for the quantification of heavy metals in mainstream smoke of 2R4F reference cigarette, and then evaluated those efficiencies in the recovery, repeatability and reproducibility. In all methods, volatile heavy metals, As, showed the highest CV value, and Cd showed the lowest one. However, the solvent injection method showed the most stable recovery rate and CV value of 2.36 %. This method showed also advantages in time-consuming and compatibility with ICP-MS system. This results demonstrate that solvent injection method can be recommended as a superior pretreatment procedure to be able to reduce contaminants and spectral interference as well as loss of the elements interested.

Considerations of Acid Decomposition System for the Analysis of Heavy Metals in Packaging-grade Paper (포장용지류에서의 중금속 분석을 위한 산분해 전처리 방법의 탐색)

  • Lee, Tai-Ju;Ko, Seung-Tae;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.43 no.1
    • /
    • pp.65-73
    • /
    • 2011
  • The fibrous raw materials in packaging-grade paper production in Korea were mainly obtained from waste paper. The use of recycled paper has both positive and negative impacts in papermaking process. The primary positive impacts are the environmental protection and manufacturing cost reduction, and the negative impacts are the quality reduction in paper quality and the accumulation of heavy metals and other pollutants in wet- and dry-end process. This study was carried out to consider the optimum acid decomposition system with the highest recovery rate for the analysis of heavy metals in packaging-grade paper. The open digestion system using Kjeldahl apparatus and the closed digestion system using microwave oven for decomposing the organic materials in paper were compared. In both open and closed digestion method, the combination of nitric acid, hydrochloric acid and hydrogen peroxide showed higher recovery rate than using only nitric acid alone because the presence of Cl- ions in hydrochloric acid stabilizes ligand formation with metal ions. KOCC was observed to have the highest heavy metal content among the recycled paper samples. The heavy metal contents decomposed with the closed digestion system were relatively higher than with open digestion system.

Removal of heavy metals using waste sludge by biosorptive flotation (폐슬러지를 이용한 흡착·부상 공정에 의한 중금속 제거)

  • Lee Chang-Han;Ahn Kab-Hwan
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.691-697
    • /
    • 2005
  • Waste sludge may be used to recovery wastewater contaminated with heavy metals. The waste sludge is an inexpensive readily available source of biomass for biosorption with metal-bearing wastewater. The biosorption of heavy metals such as Pb(II), Cu(II), Cr(II), and Cd(II) onto waste sludge was investigated in batch ex­periments and waste sludge loaded heavy metals was separated by dissolved air flotation. The biosorption equi­bria of heavy metals could be described by Langmuir and Freundich isotherms. The adsorption capacity for waste sludge was in the sequence of Pb(II)>Cr(II)>Cu(II)>Cd(II). The system attained equilibrium about 20 min. The Langmuir and Freundlich adsorption model effectively described the biosorption equilibrium of Cu(II) and Cr(II) ions on waste sludge. Maximum adsorption capacity of Cu(II) and Cr(II) were 196.08 and 158.73 mg/g, respectively. Solid-liquid separation efficiencies were kept above $95\%$ on waste sludge loaded heavy metals, and were decreased with pH increasing.

Zinc Accumulation in the Cell of Zinc-Tolerant Bacteria, Pseudomonas chlororaphis, and Recovery of Zinc from the Cells Accumulating Zinc (아연 내성균의 균체내 아연 축적특성 및 균체내 축적된 아연의 회수)

  • 조주식;한문규
    • Journal of Environmental Science International
    • /
    • v.5 no.3
    • /
    • pp.317-327
    • /
    • 1996
  • This study was performed to develop the biological treatment technology of wastewater polluted with heavy metals. Zinc-tolerant microorganism, such as Pseudomonas chlororaphis which possessed the ability to accumulate zinc, was isolated from industrial wastewaters polluted with various heavy metals. The characteristics of zinc accumulation in the cells, recovery of the zinc from the cells accumulating zinc, were investigated. Removal rate of zinc from the solution containing 100 mall of Zinc by zinc-tolerant microorganism was more than 90% at 48 hours after inoiulation of the microorganisms. A large number of the electron-dense granules were found mainly on thIn cell wall and membrane fractions, when determined by transmission electron microscope. Energy dispersive X- ray spectroscopy revealed that the electron-dense granules were zinc complex with the substances binding Heavy metals. The zinc accumulated into cells was not desorbed by distilled water, but more than 80% of the zinc accumulated was desorbed by 0.1M-EDTA. The residues of the cells after combustion at 55$0^{\circ}C$ amounted to about 21% of the dry weight of the cells. EDS analysis showed that the residues were comparatively pure zinc compounds containing more than 79% of zinc.

  • PDF

EAF Dust Recycling Technology in Japan

  • Sasamoto, Hirohiko;Furukawa, Takeshi
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.9-18
    • /
    • 2001
  • 1. EAF Dust in Japan - Generation and Characteristics. The quantity of dust generated from EAF shops in Japan was estimated to be 520,000 tons/year in 1999. Extremely fine dust (or fume) is formed in the EAF by metal vaporization. Its characteristics such as chemical compositions, phases, particle size, leaching of heavy metal are mentioned. 2. EAF Dust Treatment Methods in Japan. In 1999, 61% of EAF dust was treated by regional zinc recovery processing routes, 25% went to landfill disposal, 4% was reused as cement material, and 10% was treated by on-site processing routes. The problems of EAF dust treatment methods in Japan are: (1) very high treatment cost, and (2) heavy environmental load (leaching of heavy metal, emission of dioxins, depletion of disposal sites, etc). It has been much hoped for that new dust management technology would be developed. 3. New technology of EAF dust treatment in Japan. In Japan, some new technologies of EAF dust treatment have been developed, and some others are in the developing stages. Following five processes are mentioned:. (1) Smelting reduction process by Kawasaki Steel, (2) DSM process by Daido Steel, (3) VHR process by Aichi Steel, (4) On-site dust direct recycling technology, and (5) Process technology of direct separation and recovery of iron and zinc metals contained in high temperature EAF off gas by the Japan Research and Development Center fur Metals.

  • PDF

Trends of Thermochemical Technology for the Recovery of Phosphorus from Sewage Sludge Ash (열화학적 방법에 의한 하수 슬러지 소각재에서의 인 회수 기술 동향)

  • Jeon, Seulki;Shin, Hyuna;Kim, Dong-Jin
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.87-98
    • /
    • 2018
  • Phosphorus (P) is an essential and irreplaceable element for all living organisms, and it is widely used as a fertilizer. Unfortunately, it is estimated that phosphate reservoir is depleted within about 100 years. Sewage sludge ash (SSA) is an alternative resource for P recovery because of its high P content. However, SSA cannot be directly used as a fertilizer due to heavy metals in it and low P bioavailability. Thermochemical treatment with Cl donor is known to reduce heavy metal contents and increase P bioavailability of SSA. Literature review on thermochemical technologies of SSA for the reduction of heavy metals and bioavailability enhancement has been carried out to estimate the status of current P recovery technology and to develop strategic future research plan for P recovery. The review showed that $CaCl_2$ and $MgCl_2$ were the most effective Cl donors and reaction temperature (< $1000^{\circ}C$) was the critical operation condition for the reduction. The removal efficiency depends on the species of heavy metals. Thermochemical technology of SSA for P recovery showed the possibility of commercial application in the near future to overcome the coming crisis of human sustainability by P depletion, but it needs cost effectiveness and more ecofriendly process to reduce energy consumption.

Recovery of Heavy Metals using Oxidized Undaria pinnatifida in Plating Wastewater

  • Park, Jae-Yeon;Jeon, Chung;Yu, Yeong-Je
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.357-360
    • /
    • 2000
  • Biosorption process is an economic and potential process for metal sequestering from the water. The oxidized Undaria pinnatifida by nitric acid had high uptake capacity for heavy metals of 4 - 6 meq / g dry mass. For the application of oxidized Undaria pinnatifida, recovery of metal in plating wastewater was studied. The uptake capacity of the oxidized Undaria pinnatifida was high compared to the ion exchanger IR-120 plus. The treatment efficiency of chromium and copper in the wastewater was 85% In batch. Activated carbon was used to assist the recovery of water by removing organic matters of the wastewater.

  • PDF

Stabilization of Agricultural Soil Contaminated by Arsenic and Heavy Metals using Biochar derived from Buffalo Weed (단풍잎돼지풀 기반 바이오차를 이용한 비소 및 중금속 오염 농경지의 안정화)

  • Koh, Il-Ha;Kim, Jungeun;Kim, Gi Suk;Park, Mi Sun;Kang, Dae Moon;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.87-100
    • /
    • 2016
  • Biochar, which has high alkalinity, has widely studied for amendment of soil that contaminated with heavy metals. The aim of this study is assessment of amendment for arsenic and heavy metals contaminated acidic agricultural soil using biochar that derived from buffalo weed (A. trifida L. var. trifida). Pot experiments were carried out including analysis of soil solution, contaminants fractionation, soil chemical properties and plant (lettuce) uptake rate. Arsenic and heavy metals concentrations in soil solution showed relatively low in biochar added experiments when compared to the control. In the heavy metals fractionation in soil showed decrease of exchangeable fraction and increase of carbonates fraction; however, arsenic fractionations showed constant. Soil chemical properties indicated that biochar could induce recovery of soil quality for plant growth in terms of soil alkalinity. However, phosphate concentration in biochar added soil decreased due to Ca-P precipitation by exchangeable calcium from biochar. Arsenic and heavy metals uptake rate of plant in the amended experiment decreased to 50% when compared to the control. Therefore biochar derived from buffalo weed can be used as amendment material for agricultural soil contaminated with arsenic and heavy metals. Precipitation of As-Ca and metal-carbonates are major mechanisms for soil amendment using char.