• 제목/요약/키워드: reconstructive matrix

검색결과 186건 처리시간 0.029초

Staphylococcus enterotoxin B와 lipopolysaccharide를 작용시킨 사람 섬유아 세포에서 생성된 Transforming Growth $Factor-{\beta}_1$의 정량적 분석 (QUANTITATIVE ANALYSIS OF TRANSFORMING GROWTH $FACTOR-{\beta}_1$ IN HUMAN FIBROBLASTS INDUCED WITH STAPHYLOCOCCUS ENTEROTOXIN B AND LIPOPOLYSACCHARIDE)

  • 이성근;김광혁;김욱규;김종렬;정인교;양동규
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제22권2호
    • /
    • pp.123-132
    • /
    • 2000
  • $TGF-{\beta}_1$ is a potent chemotactic factor for inflammatory cells and fibroblasts. It also stimulates the celluar source and components of extracellular matrix and the production of proteinase inhibitors. Collectively, these biologic activities lead to the accumulation and stabilization of the nascent matrix, which is vital to infection control. The objective of this study is to investigate production of $TGF-{\beta}$ in vitro fibroblast culture in the presence of Staphylococcus enterotoxin B(SEB) and/or lipopolysaccharide(LPS) and to elucidate the role of $TGF-{\beta}_1$ which may be responsible for infection control. The fibroblasts were originated from gingiva and facial dermis in 26 year-old male patient. In the presence of LPS($0.01{\mu}g$, $0.1{\mu}g$, $1.0{\mu}g$), SEB($0.01{\mu}g$, $0.l{\mu}g$, $1.0{\mu}g$) respectively, $cells(5{\times}10^3ml)$ were cultivated in vitro. At 1, 3, and 5 days after incubation, cells were counted. Also, $cells(2.5{\times}10^5ml)$ were cultivated in EMEM with LPS(0.01, 0.1 and $1.0{\mu}g$), SEB(0.01, 0.1 and $1.0{\mu}g$) respectively and $LPS(0.1{\mu}g)$ and $SEB(0.1{\mu}g)$ in combination for 24, 48, and 72 hours respectively. Culture supernatants were harvested at 1, 2, and 3 days after incubation period and triplicate culture supernatants were pooled and $TGF-{\beta}_1$ was assayed in duplicate. The results were as follows. 1. In gingival fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell Proliferation occurred very significantly since 3 days after incubation, compared with the control and the production of $TGF-{\beta}_1$ occurred very significantly at 1 day after incubation, compared with the control. 2. In facial dermal fibroblast induced with SEB and LPS respectively or in combination, the suppression of cell proliferation occurred very significantly at 1 day after incubation, compared with the control. In SEB exposure, the production of $TGF-{\beta}_1$ was decreased very significantly at 1 day after incubation, compared with the control. However, in LPS, SEB and LPS exposure, the production of $TGF-{\beta}_1$ was increased very significantly at 1 day after incubation, compared with the control. In conclusion, the concentration of bacterial toxins and the incubation period correlated with cell proliferation and production of $TGF-{\beta}_1$ very significantly. The gingival and facial dermal fibroblasts have different phenotype each other The orchestrated understanding of fibroblast proliferation and $TGF-{\beta}_1$ production play an important part in host defense against the bacterial Infection and may prevent tissue necrosis such as necrotizing fasciitis and life-threatening syndrome such as multiple organ failure.

  • PDF

압축력을 병용한 하악골 신장술 (MANDIBULAR DISTRACTION OSTEOGENESIS WITH COMPRESSION FORCE - BONE DENSITY, HISTOLOGICAL FINDINGS AND TMJ RESPONSE)

  • 황영섭;허준;김욱규;박성진;황대석;김용덕;정인교;김규천
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제28권6호
    • /
    • pp.531-548
    • /
    • 2006
  • The purpose of this study was to investigate the biomechanical, histologic findings of distracted regenerate and TMJ response in modified distraction osteogenesis (DO) technique combined with compression force as biomechanical stimulation method which has been suggested in 2002, and developed thereafter by authors. This study was performed with two experiments. First experiment was designed to explore the optimal ratio of compression force versus distraction force for the new DO technique. Second experiment was planned to evaluate the reaction of TMJ tissue, especially condyle, disc after application of the DO technique with compression force. Total 52 New Zealand adult male-rabbits with 3.0kg body weight were used for the study. For the first study, 30 adult male-rabbits underwent osteotomy at one side of mandibular body and a external distraction device was applied on each rabbit with same manner. In the control group of 10 rabbits, final 8 mm of distraction with 1 mm rate per day was done with conventional DO technique after 5 latency days. For the experimental group of 20 rabbits, a compression force with 1 mm rate per day was added to the distracted mandible on 3-latency day after over-distraction (over-lengthening). As the amount of the rate of compression versus distraction, experimental subgroup I (10 rabbits) was set up as 2 mm compression versus 10 mm distraction (1/5) and experimental subgroup II (10 rabbits) was set up as 3 mm compression versus 11 mm distraction (about 1/3). All 30 rabbits were set up to obtain final 8 mm distraction and sacrificed on postoperative 55 day to analysis on biomechanical, and histologic findings of the bone regenerates. For second study, 22 adult male-rabbits were used to evaluate TMJ response after the DO method application with compression force. In the control group, 10 rabbits was used to be performed with conventional DO method, on the other hand, in a experimental group of 10 rabbits, 10 mm distraction with 2 mm compression (1/5 ratio) was done. The remaining 2 rabbits served as the normal control group. Histomorphologic examinations on both condyle, histological studies on condyle, disc were done at 1, 2, 3, 4, 7 weeks after distraction force application. The results were as follows: 1. On the bone density findings, the experimental group II (force ratio - 1/3) showed higher bone density than the other experimental group (force ratio - 1/5) and control group (control group - $0,2906\;g/cm^2$, experimental group I - $0.2961\;g/cm^2$, experimental group II - $0.3328\;g/cm^2$). 2. In the histologic findings, more rapid bone maturation like as wide lamellar bone site, more trabeculae formation was observed in two experimental groups compared to the conventional DO control group. 3. In morphologic findings of condyle, there were no differences of size and architecture in the condyle in the control and experimental groups. 4. In histologic findings of condyles, there were thicker fiberous and proliferative layers in experimental group than those of control group until 2 weeks after distraction with compression force. But, no differences were seen between two groups on 3, 4, 7 weeks after compression. 5. In histologic findings of disc, more collagen contents in extracellular matrix, more regular fiber bundles, and less elastin fibers were seen in experimental group than control group until 2 weeks after distraction with compression. But, no differences were seen between two groups on 3, 4, 7 weeks after distraction with compression. From this study, we could identify that the new distraction osteogenesis technique with compression stimulation might improve the quality of bone regeneration. The no remarkable differences on TMJ response between control and experimental groups were seen and TMJ tissues were recovered similarly to normal TMJ condition after 3 weeks.

배양된 인간 골막기원세포의 조골세포 분화과정에서 골기질 형성정도와 혈관내피세포성장인자 신호와의 상관관계 (CORRELATION BETWEEN VASCULAR ENDOTHELIAL GRWOTH FACTOR SIGNALING AND MINERALIZATION DURING OSTEOBLASTIC DIFFERENTIATION OF CULTURED HUMAN PERIOSTEAL-DERIVED CELLS)

  • 박봉욱;변준호;류영모;하영술;김덕룡;조영철;성일용;김종렬
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제29권3호
    • /
    • pp.197-205
    • /
    • 2007
  • Angiogenesis is a essential part for bone formation and bone fracture healing. Vascular endothelial growth factor (VEGF), one of the most important molecules among many angiogenic factors, is a specific mitogen for vascular endothelial cells. VEGF-mediated angiogenesis is required for bone formation and repair. However, the effect of VEGF on osteoblastic cells during osteogenesis is still controversial. In recent days, substantial progress have been made toward developing tissue-engineered alternatives to autologous bone grafting for maxillofacial bony defects. Periosteum has received considerable interest as a better source of adult stem cells. Periosteum has the advantage of easy harvest and contains various cell types and progenitor cells that are able to differentiate into a several mesenchymal lineages, including bone. Several studies have reported the bone formation potential of periosteal cells, however, the correlation between VEGF signaling and cultured human periosteal cell-derived osteogenesis has not been fully investigated yet. The purpose of this study was to examine the correlation between VEGF signaling and cultured human periosteal-derived cells osteogenesis. Periosteal tissues of $5\;{\times}\;20\;mm$ were obtained from mandible during surgical extraction of lower impacted third molar from 3 patients. Periosteal-derived cells were introduced into the cell culture and were subcultured once they reached confluence. After passage 3, the periosteal-derived cells were further cultured for 42 days in an osteogenic inductive culture medium containing dexamethasone, ascorbic acid, and ${\beta}-glycerophosphate$. We evaluated the alkaline phosphatase (ALP) activity, the expression of Runx2 and VEGF, alizarin red S staining, and the quantification of osteocalcin and VEGF secretion in the periosteal-derived cells. The ALP activity increased rapidly up to day 14, followed by decrease in activity to day 35. Runx2 was expressed strongly at day 7, followed by decreased expression at day 14, and its expression was not observed thereafter. Both VEGF 165 and VEGF 121 were expressed strongly at day 35 and 42 of culture, particularly during the later stages of differentiation. Alizarin red S-positive nodules were first observed on day 14 and then increased in number during the entire culture period. Osteocalcin and VEGF were first detected in the culture medium on day 14, and their levels increased thereafter in a time-dependent manner. These results suggest that VEGF secretion from cultured human periosteal-derived cells increases along with mineralization process of the extracellular matrix. The level of VEGF secretion from periosteal-derived cells might depend on the extent of osteoblastic differentiation.

골수강내 혈관성 근피판 이식이 동결 건조후 자가 이식된 관절연골의 재생에 미치는 효과 (Effects of Intramedullary Vascularized Muscle Flap in Regeneration of Lyophilized, Autografted Humeral Head in Rabbits)

  • 이승구;김성태;박진일
    • Archives of Reconstructive Microsurgery
    • /
    • 제9권2호
    • /
    • pp.139-146
    • /
    • 2000
  • The aim of this study was to assess whether the functional regeneration of a lyophilized autografted cartilage could be improved by implanting a vascularized muscle flap into the medullary canal of autografted proximal humerus. A hemijoint reconstruction using a lyophilized osteochondral autograft in proximal humerus was done in 4 rabbits for control, and combined with an vascularized intramedullary muscle flap in another 4 rabbits for the experimental group. Graft healing and the repair process of osteochondral graft were followed by serial radiographs and histologic changes for 9 weeks after experiments. Each two rabbits in control and in experimental group on 5th and 9th week after implantation of hemijoint were sacrified. The results were as follows: 1. All of control and experimental froups on 5th week united solidly on osteotomized site radiologically, but their articular cartilages were destroyed more seriously in the control than that in experimental group with muscle flap on 5th and 9th week after experiment... 2. Histochemically, the cartilage surface are completely destroyed and revealed with severe osteoarthritic changes on all cartilage layers in control, but cartilaginous erosions are mild to moderate and their arthritic changes are also mild with somewhat regeneration of chondrocytes on deep layers more prominetly on 9th week of the experimental group. 3. The amount of collagen and protenized matrix which was determined by Masson-Trichrome stain was markedly decreased that means the weakness of bony strength and low osteogenic potential in lyophilized cartilage. These results suggest that an intramedullary vascularized muscle flap can improve the functional results of lyophilized osteochondral autograft by providing both increased vascularity and populations of mesenchymal cells to initiate new bone formation on osteotomized site as well as the regeneration of deep layers in articular cartilage. In clinical relevances, this lyophilized hemijoint autograft combined with an intramedullary vascularized muscle pedicle graft might be used very effectively for the treatment of malignant long bone tumors to preserve the joint functions, all or partly, and so to replace it with the artificial joint after tumor excision and hemijoint autograft.

  • PDF

인체지방유래 간질세포의 부착 및 연골분화유도를 위한 PLGA 지지체의 플라즈마 처리 효과 (The Effect of the Plasma Treatment on PLGA Scaffold for Adhesion and Chondrogenic Differentiation of Human Adipose-derived Stromal Cells)

  • 동춘희;전영준;조현미;오득영;한동근;이종원;안상태
    • Archives of Plastic Surgery
    • /
    • 제33권1호
    • /
    • pp.46-52
    • /
    • 2006
  • High-density micromass culture was needed to take three dimensions culture with ASCs(adipose derived stromal cells) and chondrogenesis. However, the synthetic polymer has hydrophobic character and low affinity to cells and other biomolecules. Therefore, the surface modification without changes of physical and chemical properties is necessary for more suitable condition to cells and biomolecules. This study was performed to investigate the effect of surface modification of poly (lactic-co-glycolic acid)(PLGA) scaffold by plasma treatment (P(+)) on the adhesion, proliferation and chondrogenesis of ASCs, and not plasma treatment (P(-)). ASCs were isolated from human subcutaneous adipose tissue obtained by lipectomy and liposuction. At 1 hour 30 minutes and 3days after cell seeding onto the P(-) group and the P(+) group, total DNA amount of attached and proliferated ASCs markedly increased in the P(+) group (p < 0.05). The changes of the actin under confocal microscope were done for evaluation of cellular affinity, at 1 hour 30 minutes, the shape of the cells was spherical form in all group. At 3rd day, the shape of the cells was fiber network form and finely arranged in P(+) group rather than in P(-) group. RT-PCR analysis of cartilage-specific type II collagen and link protein were expressed in 1, 2 weeks of induction. Amount of Glycoaminoglycan (GAG) markedly increased in P(+) group(p < 0.05). In a week, extracellular matrix was not observed in the Alcian blue and Safranin O staining. However in 2 weeks, it was observed that sulfated proteoglycan increased in P(+) group rather than in P(-) group. In conclusion, we recognized that plasma treatment of PLGA scaffold could increase the hydrophilic property of cells, and provide suitable environment for high-density micromass culture to chondrogenesis

키토산 나노 차폐막의 골조직 재생유도 능력에 관한 조직학적 연구 (A study on the biodegradable novel chitosan nanofiber membrane as a possible tool for guided bone regeneration)

  • 신승윤;박호남;김경화;이승진;박윤정;구영;류인철;한수부;정종평
    • Journal of Periodontal and Implant Science
    • /
    • 제34권3호
    • /
    • pp.543-549
    • /
    • 2004
  • Chitosan has been widely researched as bone substitution materials and membranes in orthopedic/periodontal applications. Chitosan nanofiber membrane was fabricated by chitosan nanofiber using electrospinning technique. The structure of the membrane is nonwoven, three-dimensional, porous, and nanoscale fiber-based matrix. The aim of this study was to evaluate the biocompatibility of chitosan nanofiber membrane and to evaluate its capacity of bone regeneration in rabbit calvarial defect. Ten mm diameter round cranial defects were made and covered by 2 kinds of membranes (Gore-Tex membrane, chitosan nanofiber membrane) in rabbits. Animals were sacrificed at 4 weeks after surgery. Decalcified specimens were prepared and observed by microscope. Chitosan nanofiber membrane maintained its shape and space at 4 weeks. No inflammatory cells were seen on the surface of the membrane. In calvarial defects, new bone bridges were formed at all defect areas and fused to original old bone. No distortion and resorption was observed in the grafted chitosan nanofiber membrane. However bone bridge formation and new bone formation at the center of the defect could not be seen in Gore-Tex membranes. It is concluded that the novel membrane made of chitosan nanofiber by electrospinning technique may be used as a possible tool for guided bone regeneration.