• Title/Summary/Keyword: reconstructed embryos

Search Result 88, Processing Time 0.032 seconds

Knocking-in of the Human Thrombopoietin Gene on Beta-casein Locus in Bovine Fibroblasts

  • Chang, Mira;Lee, Jeong-Woong;Koo, Deog-Bon;Shin, Sang Tae;Han, Yong-Mahn
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.6
    • /
    • pp.806-813
    • /
    • 2010
  • Animal bioreactors have been regarded as alternative tools for the production of limited human therapeutic proteins. The mammary glands of cattle are optimal tissues to produce therapeutic proteins that cannot be produced in large amounts in traditional systems based on microorganisms and eukaryotic cells. In this study, two knock-in vectors, pBCTPOKI-6 and pBCTPOKI-10, which target the hTPO gene on the bovine beta-casein locus, were designed to develop cloned transgenic cattle. The pBCTPOKI-6 and pBCTPOKI-10 vectors expressed hTPO protein in culture medium at a concentration of 774 pg/ml and 1,867 pg/ml, respectively. Successfully, two targeted cell clones were obtained from the bovine fibroblasts transfected with the pBCTPOKI-6 vector. Cloned embryos reconstructed with the targeted nuclei showed a lower in vitro developmental competence than those with the wild-type nuclei. After transfer of the cloned embryos into recipients, 7 pregnancies were detected at 40 to 60 days of gestation, but failed to develop to term. The results are the first trial for targeting of a human gene on the bovine milk protein gene locus, providing the potential for a large-scale production of therapeutic proteins in the animal bioreactor system.

Fasudil Increases the Establishment of Somatic Cell Nuclear Transfer Embryonic Stem Cells in Mouse

  • So, Seongjun;Karagozlu, Mustafa Zafer;Lee, Yeonmi;Kang, Eunju
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.1
    • /
    • pp.21-27
    • /
    • 2020
  • Somatic cell nuclear transfer derived embryonic stem cells (NT-ESCs) have significant advantages in various fields such as genetics, embryology, stem cell science, and regenerative medicine. However, the poor establishment of NT-ESCs hinders various research. Here, we applied fasudil, a Rho-associated kinase (ROCK) inhibitor, to develop somatic cell nuclear transfer (SCNT) embryos and establish NT-ESCs. In the study, MII oocytes were isolated from female B6D2F1 mice and performed SCNT with mouse embryonic fibroblasts (MEFs). The reconstructed NT-oocytes were activated artificially, and cultured to blastocysts in KSOM supplemented with 10 μM fasudil. Further, the blastocysts were seeded on inactivated MEFs in embryonic stem cell medium supplemented with 10 μM fasudil. A total of 26% of embryos formed into blastocysts in the fasudil treated group, while this ratio was 44% in the fasudil free control group. On the other hand, 30% of blastocysts were established NT-ESCs after exposure of fasudil, which was significantly higher than the control group (10%). The results suggest that fasudil reduced blastocyst development after SCNT due to inhibition of 2 cell cleavage while improved the establishment of NT-ESCs through the anti-apoptotic pathway.

Optimization of Procedure for Efficient Gene Transfer into Porcine Somatic Cells with Lipofection

  • Kim, D.Y.;McElroy, S.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.5
    • /
    • pp.648-656
    • /
    • 2008
  • The objective of this study was to establish conditions for transfection of a foreign gene into somatic cells using cationic lipid reagents and to evaluate the effects of transfection on in vitro development of somatic cell nuclear transfer (SCNT) embryos. Green fluorescent protein (GFP) gene was used as a foreign gene and a non-transfected somatic cell was utilized as a control karyoplast. Monolayers of porcine cells were established and subsequently transfected with a GFP-expressing gene (pEGFP-N1) using three types of transfection reagents (LipofectAMINE PLUS, FuGENE 6 or ExGen500). Donor cells used for SCNT included transfected fetal or adult fibroblasts and oviduct epithelial cells, either serum-fed or serum-starved. Oocytes matured in vitro for 42 h were reconstructed with either transfected or non-transfected porcine somatic cells by electric fusion and activation using a single DC pulse of 1.8 kV/cm for $30{\mu}s$ in $Ca^{2+}$ and $Mg^{2+}-containing$ 0.26 M mannitol solution. Reconstructed oocytes were subsequently cultured in NCSU-23 medium for 168 h and the developmental competence and cell number in blastocyst were compared. There were no significant differences (P>0.05) in fusion, cleavage rates or development to the blastocyst stage between non-transfected, transfected, serum-fed and serum-starved cells. However, the rates of GFP-expressing blastocysts were higher in the FuGENE 6 group (71.4%) among transfection reagents and in the fetal fibroblasts group (70.4%) for donor cells. These results indicate that fetal fibroblasts transfected with FuGENE 6 can be used as donor cells for porcine SCNT and that GFP gene can be safely used as a marker of foreign genes in porcine transgenesis.

Studies on the In Vitro Development of Cloned Embryos by Somatic Cell Nuclear Transfer in Korean Native Goats (재래산양의 체세포 핵이식에 의한 복제수정란의 체외발달에 관한 연구)

  • Park H. S.;Kim T. S.;Jung S. Y.;Lee Y. H.;Jung J. Y.
    • Journal of Embryo Transfer
    • /
    • v.20 no.2
    • /
    • pp.105-112
    • /
    • 2005
  • The present study was conducted to examine some factors affecting in vitro development of oocytes from somatic cell nuclear transfer (SCNT) in Korean native goats. Recipient oocytes were surgically collected after superovulation by using CIDR and FSH, PMSG, hCG and estrous synchronization in Korean Native goats. For nuclear transfer, the fibroblasts from caprine ear cells and fetal fibroblasts were surgically harvested and were cultured in vitro until cell confluency in serum-starvation condition (TCM-199 + $0.5\%$ FBS) for 3 to 5 days. The zona pellucidae of matured oocytes were partially drilled by laser irradiation. A single somatic cell was individually transferred into each enucleated oocyte. The reconstructed oocytes were then electrically fused and activated. Activated NT embryos were cultured in mSOF medium supplemented with $0.8\%\;BSA\;6\~7\;day\;at\;39^{\circ}C,\;5\%\;CO_2,\;5\%\;O_2,\;90\%\;N_2$ in air. There were no significant difference in the number of embryos cleaved and 4-cell development between the fibroblast nuclei from mature ear cells and fetal cells, but the rate of 8-cell development was higher (P<0.05) in ear cells $(40.5\%)$ than in fetal cells $(55.5\%)$. However, the embryo development to morula or blastocyst was not significantly different between both the groups$(6.7\%\;vs\;16.0\%)$, respectively. The number of embryo cleaved $(79.0\%)$ were higher (P<0.05) in the oocytes activated with ionomycin+6-DMAP than in the oocytes activated electrically $(9.5\%)$. The development of fused embryos to morula or blastocyst was found $15.6\%$ in ionomycin+6-DMAP, but no morula or blastocysts were developed in electrical stimulation. The development rate of SCNT embryos to morula or blastocyst was love. (P<0.05) in SCNT embryos $(19.0\%\;vs\;0.0\%)$ than that in parthenotes $(66.1\%\;vs\;59.1\%)$. In the parthenotes, the cleavage rate and development to morula or blastocyst were significantly higher (P<0.05) as $86.8\%\;and\;50.0\%$ in ovulated oocytes than in follicular oocytes $(69.0\%\;vs\;23.6\%)$, respectively. These results suggest that some factors Including superovulation treatment, oocyte source, maturation of follicular oocytes, activation method and culture condition may affect in vitro developmental capability of embryos produced by somatic cell nuclear transfer in Korean Native goats, and the fusion rate be greatly low compared with other species.

In vitro Development Potential Following Nuclear Transfer of Porcine Interspecies Clone Embryo by Goat Somatic Cells (유산양 체세포를 이용한 돼지 난자의 이종간 핵이식 후 배발달에 관한 연구)

  • Chang, Suk-Min;Naruse, Kenji;Shin, Young-Min;Park, Chang-Sik;Jin, Dong-Il
    • Korean Journal of Agricultural Science
    • /
    • v.33 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • This study was conducted to investigate the developmental ability of interspecies cloned embryos after nuclear transfer of goat fetal fibroblast cells into porcien oocytes. Recipient porcine and goat oocytes were obtained from slaughterhouse and matured in vitro according to established protocols. Enucleation was accomplished by aspirating the first polar body and cytoplasm and a single donor cell was individually microinjected into vitelline space of the enucleated oocyte. The reconstructed oocytes were electrically fused with 0.3M mannitol fusion medium. After electro-fusion, interspecies reconstituted embryos were cultured in PZM-3 for 7 days. In porcine interspecies nuclear transfer with goat fetal fibroblast cells, the cleavage rate of reconstituted embryos were 58.9% which was no significant different from that in porcine nuclear transfer embryos (67.4%). However, the developmental rate into blastocyst stage was 5.4% in interspecies nuclear transfer which was significantly lower than that in porcine intraspecies nuclear transfer (13.6%). When the developmental ability of porcine interspecies nuclear transfer with goat cells was compared with goat intraspecies nuclear transfer, the cleavage rate of embryos were 59.2% and the developmental rate into morular and blastocyst stage was 13.6% in interspecies nuclear transfer which were significantly lower than those in intraspecies nuclear transfer embryos. This result indicated that porcine interspecies nuclear transfer with goat fetal fibroblast cells showed the developmental potential in vitro with lower cleavage and developmental rate compared with intraspecies nuclear transfer.

  • PDF

Expression of Cyclin B1 mRNA and Protein after Activation in Enucleated Mouse Oocytes

  • Hwang, Seong-Soo;Kim, Chang-Kun;Chung, Young-Chai
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.116-116
    • /
    • 2002
  • Further development of reconstructed embryos may be dependent upon the synchronization of donor nucleus and recipient cytoplasm at cell fusion, To control the synchronization of donor and recipient cells, the enucleated MII arrested oocytes are artificially stimulated prior to embryo reconstruction. Destruction of cyclin B results in the exit of cells from M-phase of cell cycle. This study was designed to investigate the effects of single or combined stimulation affected cyclin B1 mRNA and protein levels in mouse oocytes. The oocyte activation was induced by 7% ethanol or 10$\mu\textrm{g}$/$m\ell$ Ca-ionophore without (single) or with (combined) 10$\mu\textrm{g}$/$m\ell$ cycloheximide. Competitive quantitative PCR for cyclin Bl mRNA and western blot analysis for cyclin B1 protein was preformed in mouse oocytes. Cyclin B1 mRNA level was significantly reduced in single (P<0.05) and combined (P<0.05) stimulation groups. However, this level did not change in non-activated group and increased in intact group. Cyclin B1 protein level was also significantly reduced in both single (P<0.05) and combined (P<0.05) stimulation groups. In conclusion, single and combined stimulation induces the degradation of cyclin B1 mRNA and protein after activation in enucleated mouse oocytes.

  • PDF

Localization of Cyclin B and Erk1/2 in Ovine Oocytes and MPF and MAPK Activities in Cytoplast and Karyoplast following Enucleation

  • Lee, Joon-Hee;Campbell, Keith H.S.
    • Reproductive and Developmental Biology
    • /
    • v.35 no.4
    • /
    • pp.407-414
    • /
    • 2011
  • The development of embryos reconstructed by somatic cell nuclear transfer (SCNT) is dependent upon numerous factors. Central to development is the quality and developmental competence of the recipient cytoplast and the type of the donor nucleus. Typically metaphase of the second meiotic division (MII) has become the cytoplast of choice. Production of a cytoplast requires removal of the recipient genetic material, however, it may remove proteins which are essential for development or reduce the levels of cytoplasmic proteins to influence subsequent reprogramming of the donor nucleus. In this study, enucleation at MII did not affect the activities of either MPF or MAPK kinases. Immunocytochemical staining showed that both Cyclin B1 (MPF) and Erk1/2 (MAPK) were associated with the meiotic spindle of AI/TI oocytes with little staining in the cytoplasm, however, at MII association of both proteins with the spindle had reduced and a greater degree of cytoplasmic distribution was observed. The analysis of oocyte proteins removed during enucleation is a difficult approach to the identification of factors which may be depleted in the cytoplast. This is primarily due to the large numbers of aspirated karyoplasts which would be required for the analysis.

Effects of Recipient Oocytes and Electric Stimulation Condition on In Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (수핵난자와 전기적 융합조건이 산양의 이종간 복제수정란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Recipient bovine and porcine oocytes were obtained from slaughterhouse and were matured in vitro according to established protocols. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS and primary fibroblast cultures were established in TCM-199 with 10% FBS. The matured oocytes were dipped in D-PBS plus 10% FBS + 7.5 $\mu$ g/ml cytochalasin B and 0.05M sucrose. Enucleation were accomplished by aspirating the first polar body and partial cytoplasm which containing metaphase II chromosomes using a micropipette with an out diameter of 20∼30 $\mu$m. A Single donor cell was individually transferred into the perivitelline space of each enucleated oocyte. The reconstructed oocytes were electric fusion with 0.3M mannitol fusion medium. After the electrofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. And porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6 ∼8 day at $39^{\circ}C, 5% CO_2 $in air. Interspecies nuclear transfer by recipient bovine oocytes were fused with electric length 1.95 kv/cm and 2.10 kv/cm. There was no significant difference between two electric length in fusion rate(47.7 and 44.6%) and in cleavage rate(41.9 and 54.5%). Using electric length 1.95 kv/cm and 2.10 kv/cm in caprine-porcine NT oocytes, there was also no significant difference between two treatments in fusion rate(51.3 and 46.1%) and in cleavage rate(75.0 and 84.9%). The caprine-bovine NT oocytes fusion rate was lower(P<0.05) in 1 pulse for 60 $\mu$sec(19.3%), than those from 1 pulse for 30 $\mu$sec(50.8%) and 2 pulse for 30 $\mu$sec(31.0%). The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(53.3%) and 2 pulse for 30 $\mu$sec(50.0%), than in 1 pulse for 60 $\mu$sec(18.2%). The caprine-porcine NT oocytes fusion rate was 48.1% in 1 pulse for 30 $\mu$sec, 45.2% in 2 pulse for 30 $\mu$sec and 48.6% in 1 pulse for 60 $\mu$sec. The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(78.4%) and 1 pulse for 60 $\mu$sec(79.4%), than in 2 pulse for 30 $\mu$sec(53.6%). In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer and 30.6% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than parthenotes(37.4%).

Interspecies Nuclear Transfer using Bovine Oocytes Cytoplasm and Somatic Cell Nuclei from Bovine, Porcine, Mouse and Human (소, 돼지, 생쥐, 사람의 체세포와 소 난자를 이용한 이종간 핵 이식)

  • 박세영;김은영;이영재;윤지연;길광수;김선균;이창현;정길생;박세필
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.3
    • /
    • pp.235-243
    • /
    • 2002
  • This study was designed to examine the ability of the bovine (MII) oocytes cytoplasm to support several mitotic cell cycles under the direction of differentiated somatic cell nuclei of bovine, porcine, mouse and human. Bovine GV oocytes were matured in TCM-199 supplemented with 10% FBS. At 20h after IVM, recipient oocytes were stained with 5 $\mu\textrm{g}$/$m\ell$ Hoechst and their 1st polar body (PB) and MII plate were removed by enucleation micropipette under UV filter. Ear skin samples were obtained by biopsy from an adult bovine, porcine, mouse and human and cultured in 10% FBS added DMEM. Individual fibroblast was anlaysed chromosome number to confirm the specificity of species. Nuclear transferred (NT) units were produced by electrofusion of enucleated bovine oocytes with individual fibroblast. The reconstructed embryos were activated in 5 $\mu$M ionomycin for 5 min followed by 1.9 mM 6-dimethylaminopurine (DMAP) in CR1aa for 3 h. And cleaved NT embryos were cultured in CR1aa medium containing 10% FBS on monolayer of bovine cumulus cell for 8 days. Also NT embryo of 4~8 cell stage was analysed chromosome number to confirm the origin of nuclear transferred somatic cell. The rates of fusion between bovine recipient oocytes and bovine, porcine, mouse and human somatic cells were 70.2%, 70.2%, 72.4% and 63.0%, respectively. Also, their cleavage rates were 60.6%, 63.7%, 54.1% and 62.7%, respectively, there were no differences among them. in vitro development rates into morula and blastocyst were 17.5% and 4.3% in NT embryos from bovine and human fibroblasts, respectively. But NT embryos from porcine and mouse fibroblasts were blocked at 16~32-cell stage. The chromosome number in NT embryos from individual fibroblast was the same as chromosome number of individual species. These results show that bovine MII oocytes cytoplasm has the ability to support several mitotic cell cycles directed by newly introduced nuclear DNA.

Re-Cloning by Somatic Cell Nuclear Transfer from a Cloned Korean Native Goat (복제 산양(진순이)의 체세포 핵이식에 의한 Re-Cloning에 관한 연구)

  • Jung, S.Y.;Park, H.S.
    • Journal of Embryo Transfer
    • /
    • v.22 no.2
    • /
    • pp.89-95
    • /
    • 2007
  • The present study was conducted to examine some factors affecting in vitro development and fecundity of embryos recloned with somatic cell nuclear transfer (SCNT). Fibroblast cells retrieved from the ear of a 3-week-old, cloned Korean goat (Jinsoonny) were used as karyoplast donors and serum-starvation was conducted in tissue culture medium (TCM)-199 supplemented with 0.5% FBS. Recipient oocytes were surgically collected by flushing the oviducts 35 h after hCG injection following FSH priming. The zonae pellucidae of the oocytes were partially perforated with a laser drill and a donor cell was transferred into an enucleated oocyte. The couplets were electrically fused and activated by ionomycin (5 min) and 6-DMAP (4 h). The reconstructed embryos were cultured in mSOF medium containing 0.8% BSA at $39^{\circ}C$ in an atmosphere of 5% $CO_2$, 5% $%O_2$, 90% $N_2$ for 12 to 15 h. Re-cloned embryos (2- to 4-cell stages) were surgically transferred into the oviducts of the recipients and pregnancy was subsequently diagnosed by progesterone assay and ultrasound on Days 21 and 63 of pregnancy. The fusion rate following 1st fusion pulse was higher (p<0.05) in 2nd cloning (65.9%) compared to 1st cloning (51.0%), but it was not different in the other groups. The rate of cleavage after fusion was significantly higher (p<0.05) in 1st (77.7%) than in 2nd cloning (56.0%). A total of 175 re-cloned embryos were transferred into 28 recipients. On day 21 and 60 after transfer, 11 (39.3%) and 4 recipients (17.4%) were pregnancy, respectively. In comparison of pregnancy rate by estrous synchronization, a total of 66 and 109 re-cloned embryos were transferred into 11 recipients in natural estrus and 17 recipients in induced estrus, respectively. Five (45.4%) and 2 recipients (18.2%) in natural estrus were pregnant on days 21 and 63 while 6 (35.3%) and 2 (11.8%) recipients in induced estrus were pregnant, respectively. These results show that recloning of goat can be achieved by SCNT and estrous synchronization between donor and recipient animals may be one of the major factors affecting success rate.