• 제목/요약/키워드: reconstitution buffer

검색결과 2건 처리시간 0.014초

Reconstitution of Iron Cores in Horse Spleen and Yeast-derived Recombinant Human H- and L-chain Ferritins

  • Kim, Sung-Won;Jo, Min-Young;Yokota, Yasuhiro;Chung, Yun-Jo;Park, Chung-Ung;Kim, Kyung-Suk
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권2호
    • /
    • pp.237-242
    • /
    • 2004
  • Recombinant human ferritin homopolymers (rHF and rLF) were successfully produced in the Saccharomyces cerevisiae Y2805, which was transformed with human ferritin H or L-chain genes, respectively. In order to characterize the molecular properties of the recombinant ferritins in relation to mineralization, the proteins were isolated and apoferritins were prepared. The apoferritins were reconstituted with 2000 Fe atoms per protein molecule under various experimental conditions (the concentration of the protein, the buffer concentration of the MOPS buffer, the total volume of the reaction and the reconstitution method). The structure and composition of the iron cores formed in the ferritins were examined using transmission electron microscopy. The recombinant ferritins behaved in a similar manner to other mammalian ferritins in accumulating iron in the core. Proteins of rHF and rLF showed varying reconstitution yields of 37-72% depending on the reaction conditions. In general, the rHF showed higher reconstitution yield than the rLF at the protein concentrations and the reaction volumes we examined. Iron cores with a similar mean particle size were obtained in the rHF, rLF and horse spleen ferritin reconstituted at a protein concentration of 1.0 mg/mL. Electron diffraction of all the three ferritins showed 2-3 diffuse lines, with d-spacings corresponding to those of the mineral ferrihydrite with a limited crystallinity.

Optimization of 1D 1H Quantitative NMR (Nuclear Magnetic Resonance) Conditions for Polar Metabolites in Meat

  • Kim, Hyun Cheol;Ko, Yoon-Joo;Kim, Minsu;Choe, Juhui;Yong, Hae In;Jo, Cheorun
    • 한국축산식품학회지
    • /
    • 제39권1호
    • /
    • pp.1-12
    • /
    • 2019
  • The objective of this study was to establish an optimized 1D $^1H$ quantitative nuclear magnetic resonance (qNMR) analytical method for analyzing polar metabolites in meat. Three extraction solutions [0.6 M perchloric acid, 10 mM phosphate buffer, water/methanol (1:1)], three reconstitution buffers [20 mM 3-morpholinopropane-1-sulfonic acid, 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid, phosphate buffer], and two pulse programs (zg30, noesypr1d) were evaluated. Extraction with 0.6 M perchloric acid and 20 mM phosphate resulted in a stable baseline and no additional overlap for quantifying polar metabolites in chicken breast. In qNMR analysis, zg30 pulse program (without water-suppression) showed smaller relative standard deviation (RSD) and faster running time than noesypr1d (water-suppression). High-performance liquid chromatography was compared with qNMR analyses to validate accuracy. The zg30 pulse program showed good accuracy and lower RSD. The optimized qNMR method was able to apply for beef and pork samples. Thus, an optimized 1D $^1H$ qNMR method for meat metabolomics was established.