The number and variety of products and services offered by companies have increased dramatically, providing customers with more choices to meet their needs. As a solution to this information overload problem, the provision of tailored services to individuals has become increasingly important, and the personalized recommender systems have been widely studied and used in both academia and industry. Existing recommender systems face important problems in practical applications. The most important problem is that it cannot clearly explain why it recommends these products. In recent years, some researchers have found that the explanation of recommender systems may be very useful. As a result, users are generally increasing conversion rates, satisfaction, and trust in the recommender system if it is explained why those particular items are recommended. Therefore, this study presents a methodology of providing an explanatory function of a recommender system using a review text left by a user. The basic idea is not to use all of the user's reviews, but to provide them in a summarized form using only reviews left by similar users or neighbors involved in recommending the item as an explanation when providing the recommended item to the user. To achieve this research goal, this study aims to provide a product recommendation list using user-based collaborative filtering techniques, combine reviews left by neighboring users with each product to build a model that combines text summary methods among deep learning-based natural language processing methods. Using the IMDb movie database, text reviews of all target user neighbors' movies are collected and summarized to present descriptions of recommended movies. There are several text summary methods, but this study aims to evaluate whether the review summary is well performed by training the Sequence-to-sequence+attention model, which is a representative generation summary method, and the BertSum model, which is an extraction summary model.
As personal devices and pervasive technologies for interacting with networked objects continue to proliferate, there is an unprecedented world of scattered pieces of contextualized information available. However, the explosive growth and variety of information ironically lead users and service providers to make poor decision. In this situation, recommender systems may be a valuable alternative for dealing with these information overload. But they failed to utilize various types of contextual information. In this study, we suggest a methodology for context-aware recommender systems based on the concept of contextual boundary. First, as we suggest contextual boundary-based profiling which reflects contextual data with proper interpretation and structure, we attempt to solve complexity problem in context-aware recommender systems. Second, in neighbor formation with contextual information, our methodology can be expected to solve sparsity and cold-start problem in traditional recommender systems. Finally, we suggest a methodology about context support score-based recommendation generation. Consequently, our methodology can be first step for expanding application of researches on recommender systems. Moreover, as we suggest a flexible model with consideration of new technological development, it will show high performance regardless of their domains. Therefore, we expect that marketers or service providers can easily adopt according to their technical support.
Recommender systems (RS) that predict a set of items a target user is likely to prefer have been extensively studied in academia and have been aggressively implemented by many companies such as Google, Netflix, eBay, and Amazon. Data imputation alleviates the data sparsity problem occurring in recommender systems by inferring missing ratings and adding them to the original data. In this paper, we point out the drawbacks of existing approaches and make suggestions for data imputation techniques. We also justify our suggestions through extensive experiments.
The rapid growth of blog has caused information overload where bloggers in the virtual community space are no longer able to effectively choose the blogs they are exposed to. Recommender systems have been widely advocated as a way of coping with the problem of information overload in e-business environment. Collaborative Filtering (CF) is the most successful recommendation method to date and used in many of the recommender systems. In this research, we propose a CF-based recommender system for bloggers to find their similar bloggers or preferable virtual community without burdensome search effort. For such a purpose, we apply the "Interest Value" to CF recommender systems. The Interest Value is the quantity value about users' transaction data in virtual community, and can measure the opinion of users accurately. Based on the Interest Value, the neighborhood group is generated, and virtual community list is recommended using the Community Likeness Score (ClS). Our experimental results upon real data of Korean Blog site show that the methodology is capable of dealing with the information overload issue in virtual community space. And Interest Value is proved to have the potential to meet the challenge of recommendation methodologies in virtual community space.
Recently as ubiquitous environment comes to the fore, information density is raised and enterprise is being able to capture and utilize customer-related information at the same time when the customer purchases a product. In this environment, a need for the recommender systems which can deliver proper information to the customer at the right time and right situation is highly increased. Therefore, the research on recommender systems continued actively in a variety of fields. Until now, most of recommender systems deal with item recommendation. However, in the market in ubiquitous environment where the same item can be purchased at several stores, it is highly desirable to recommend store to the customer based on his/her contextual situation and preference such as store location, store atmosphere, product quality and price, etc. In this line of research, we proposed the store recommender system using customer's contextual situation and preference in the market in ubiquitous environment. This system is based on collaborative filtering and Apriori algorithms. It will be able to provide customer-centric service to the customer, enhance shopping experiences and contribute in revitalizing market in the long term.
Proceedings of the Korea Inteligent Information System Society Conference
/
2004.11a
/
pp.203-210
/
2004
Due to the explosion of e-commerce, recommender systems are rapidly becoming a core tool to accelerate cross-selling and strengthen customer loyalty. There are two prevalent approaches for building recommender systems - content-based recommending and collaborative filtering. Collaborative filtering recommender systems have been very successful in both information filtering domains and e-commerce domains, and many researchers have presented variations of collaborative filtering to increase its performance. However, the current research on recommendation has paid little attention to the use of time related data in the recommendation process. Up to now there has not been any study on collaborative filtering to reflect changes in user interest. This paper proposes dynamic fuzzy clustering algorithm and apply it to collaborative filtering algorithm for dynamic recommendations. The proposed methodology detects changes in customer behavior using the customer data at different periods of time and improves the performance of recommendations using information on changes. The results of the evaluation experiment show the proposed model's improvement in making recommendations.
Kim, Jae-Kyeong;Cho, Yoon-Ho;Kim, Seung-Tae;Kim, Hye-Kyeong
Asia pacific journal of information systems
/
v.15
no.3
/
pp.223-241
/
2005
In spite of the rapid growth of mobile multimedia contents market, most of the customers experience inconvenience, lengthy search processes and frustration in searching for the specific multimedia contents they want. These difficulties are attributable to the current mobile Internet service method based on inefficient sequential search. To overcome these difficulties, this paper proposes a MOBIIe COntents Recommender System for Movie(MOBICORS-Movie), which is designed to reduce customers' search efforts in finding desired movies on the mobile Internet. MOBICORS-Movie consists of three agents: CF(Collaborative Filtering), CBIR(Content-Based Information Retrieval) and RF(Relevance Feedback). These agents collaborate each other to support a customer in finding a desired movie by generating personalized recommendations of movies. To verify the performance of MOBICORS-Movie, the simulation-based experiments were conducted. The results from this experiments show that MOBICORS-Movie significantly reduces the customer's search effort and can be a realistic solution for movie recommendation in the mobile Internet environment.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.3
/
pp.775-793
/
2023
Human decision-making is a complex behavior. A replication of human decision making offers a potential to enhance the capacity of intelligent systems by providing additional user assistance in decision making. By reducing the effort and task complexity on behalf of the user, such replication would improve the overall user experience, and affect the degree of intelligence exhibited by the system. This paper explores individuals' decision-making processes when using recommender systems, and its related outcomes. In this study, human decision-making (HDM) refers to the selection of an item from a given set of options that are shown as recommendations to a user. The goal of our study was to identify IS constructs that contribute towards such decision-making, thereby contributing towards creating a mental model of HDM. This was achieved through recording Electroencephalographic (EEG) readings of subjects while they performed a decision-making activity. Readings from 16 righthanded healthy avid readers reflect that reward, theory of mind, risk, calculation, task intention, emotion, sense of touch, ambiguity and decision making are the primary constructs that users employ while deciding from a given set of recommendations in an online bookstore. In all 10 distinct brain areas were identified. These brain areas that lead to their respective constructs were found to be cingulate gyrus, precentral gyrus, inferior parietal lobule, posterior cingulate, medial frontal gyrus, anterior cingulate, postcentral gyrus, superior frontal gyrus, inferior frontal gyrus, and middle frontal gyrus (also referred to as dorsolateral prefrontal gyrus (DLPFC)). The identified constructs would help in developing a design theory for enhancing user assistance, especially in the context of recommender systems.
This study aims to identify the multidimensional variables and sub-variables and study their relative weight in music recommender systems when maximizing the rating function R. To undertake the task, a optimization formula and variables for a research model were derived from the review of prior works on recommender systems, which were then used to establish the research model for an empirical test. With the research model and the actual log data of real customers obtained from an on line music provider in Korea, multiple regression analysis was conducted to induce the optimal correlation of variables in the multidimensional model. The results showed that the correlation value against the rating function R for Items was highest, followed by Social Relations, Users and Contexts. Among sub-variables, popular music from Social Relations, genre, latest music and favourite artist from Items were high in the correlation with the rating function R. Meantime, the derived multidimensional recommender systems revealed that in a comparative analysis, it outperformed two dimensions(Users, Items) and three dimensions(Users, Items and Contexts, or Users, items and Social Relations) based recommender systems in terms of adjusted $R^2$ and the correlation of all variables against the values of the rating function R.
Journal of the Korean Institute of Intelligent Systems
/
v.25
no.5
/
pp.431-436
/
2015
As a number of TV programs broadcast today, researches about TV program recommender system have been studied and many researchers have been studying recommender system to produce recommendation with high accuracy. Recommender system recommends TV program to user by using metadata like genre, plot or calculating users' preferences about TV programs. In this paper, we propose a new TV program Collaborative Filtering Recommender System that exploits viewing time pattern like viewing ratio, relation with finish time and recently viewing history to calculate preference for high-quality of recommendation. To verify usefulness of our research, we also compare our method which utilizes viewing time patterns and baseline which simply recommends TV program of user's most frequently watched channel. Through this experiments, we show that our method very effectively works and recommendation performance increases.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.