• Title/Summary/Keyword: recombination

Search Result 1,248, Processing Time 0.03 seconds

A Yeast MRE3/REC114 Gene is Essential for Normal Cell Growth and Meiotic Recombination

  • Leem, Sun-Hee
    • Journal of Microbiology
    • /
    • v.37 no.4
    • /
    • pp.248-255
    • /
    • 1999
  • We have analyzed the MRE3/REC114 gene of Saccharomyces cerevisiae, previously detected in isolation of mutants defective in meiotic recombination. We cloned the MRE3/REC114 gene by complementation of the meiotic recombination defect and it has been mapped to chormosome XIII. The DNA sequence analysis revealed that the MRE3 gene is identical to the REC114 gene. The upstream region of the MRE3/REC114 gene contains a T_4C site, a URS (upstream repression sequence) and a TR (T-rich) box-like sequence, which reside upstream of many meiotic genes. Coincidentally, northern blot analysis indicated that the three sizes of MRE3/REC114 transcripts, 3.4, 1.4 and 1.2 kb, are induced in meiosis. A less abundant transcript of 1.4 kb is detected in both mitotic and meiotic cells, suggesting that it is needed in mitosis as well as meiosis. To examine the role of the MRE3/REC114 gene, we constructed mre3 disruption mutants. Strains carrying an insertion or null deletion of the MRE3/REC114 gene showed slow growth in nutrient medium and the doubling time of these cells increased approximately by 2-fond compared to the wild-type strain. Moreover, the deletion mutant (${\delta}$mre3) displayed no meiotically induced recombination and no viable spores. The mre3/rec114 spore lethality can be suppressed by spo13, a mutation that causes cells to bypass reductional division. The double-stranded breaks (DSBs) which are involved in initiation of meiotic recombination were not detected in the analysis of meiotic chromosomal DNA from the mre3/rec114 disruptant. From these results we suggest that the MRE3/REC114 gene product is essential in normal growth and in early meiotic stages involved in meiotic recombination.

  • PDF

Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis

  • Cho, Hong-Rae;Kong, Yoon-Ju;Hong, Soo-Gil;Kim, Keun Pil
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.550-556
    • /
    • 2016
  • During meiosis, exchange of DNA segments occurs between paired homologous chromosomes in order to produce recombinant chromosomes, helping to increase genetic diversity within a species. This genetic exchange process is tightly controlled by the eukaryotic RecA homologs Rad51 and Dmc1, which are involved in strand exchange of meiotic recombination, with Rad51 participating specifically in mitotic recombination. Meiotic recombination requires an interaction between homologous chromosomes to repair programmed double-strand breaks (DSBs). In this study, we investigated the budding yeast meiosis-specific proteins Hop2 and Sae3, which function in the Dmc1-dependent pathway. This pathway mediates the homology searching and strand invasion processes. Mek1 kinase participates in switching meiotic recombination from sister bias to homolog bias after DSB formation. In the absence of Hop2 and Sae3, DSBs were produced normally, but showed defects in the DSB-to-single-end invasion transition mediated by Dmc1 and auxiliary factors, and mutant strains failed to complete proper chromosome segregation. However, in the absence of Mek1 kinase activity, Rad51-dependent recombination progressed via sister bias in the $hop2{\Delta}$ or $sae3{\Delta}$ mutants, even in the presence of Dmc1. Thus, Hop2 and Sae3 actively modulate Dmc1-dependent recombination, effectively progressing homolog bias, a process requiring Mek1 kinase activation.

Complete Genome Sequences and Evolutionary Analysis of Cucurbit aphid-borne yellows virus Isolates from Melon in Korea

  • Kwak, Hae-Ryun;Lee, Hee Ju;Kim, Eun-A;Seo, Jang-Kyun;Kim, Chang-Seok;Lee, Sang Gyu;Kim, Jeong-Soo;Choi, Hong-Soo;Kim, Mikyeong
    • The Plant Pathology Journal
    • /
    • v.34 no.6
    • /
    • pp.532-543
    • /
    • 2018
  • Complete genome sequences of 22 isolates of Cucurbit aphid-borne yellows virus (CABYV), collected from melon plants showing yellowing symptom in Korea during the years 2013-2014, were determined and compared with previously reported CABYV genome sequences. The complete genomes were found to be 5,680-5,684 nucleotides in length and to encode six open reading frames (ORFs) that are separated into two regions by a non-coding internal region (IR) of 199 nucleotides. Their genomic organization is typical of the genus Polerovirus. Based on phylogenetic analyses of complete nucleotide (nt) sequences, CABYV isolates were divided into four groups: Asian, Mediterranean, Taiwanese, and R groups. The Korean CABYV isolates clustered with the Asian group with > 94% nt sequence identity. In contrast, the Korean CABYV isolates shared 87-89% sequence identities with the Mediterranean group, 88% with the Taiwanese group, 81-84% with the CABYV-R group, and 72% with another polerovirus, M.. Recombination analyses identified 24 recombination events (12 different recombination types) in the analyzed CABYV population. In the Korean CABYV isolates, four recombination types were detected from eight isolates. Two recombination types were detected in the IR and P3-P5 regions, respectively, which have been reported as hotspots for recombination of CABYV. This result suggests that recombination is an important evolutionary force in the genetic diversification of CABYV populations.

Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae (효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화)

  • Sung, Young Jin;Yoon, Sang Wook;Kim, Keun Pil
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • During meiosis, genetic recombinants are formed by homologous recombination accompanying with the programmed double-strand breaks (DSBs) and strand exchanges between homologous chromosomes. The mechanism is generated by recombination intermediates such as single-end invasions (SEIs) and double-Holliday junctions (dHJs), and followed by crossover (CO) or non-crossover (NCO) products. Our study was focused on the analysis of meiotic recombination intermediates (DSBs, SEIs, and dHJs) and final recombination products (CO and NCO). We identified these meiotic recombination intermediates using DNA physical analysis under HIS4LEU2 "hot spot" system in budding yeast, Saccharomyces cerevisiae. For DNA physical analysis, when the hot spot locus is recognized by restriction enzyme from synchronous meiotic cells, the fragmented DNA that are forming recombination intermediates can be detected and quantified through Southern hybridization analysis. Our study suggests that this system can analyze the structural change of recombination intermediates during DSB-SEI transition, double-Holiday junctions and crossover/non-crossover products in meiosis.

Effect of Non-homologous Spacing in Target DNA Sequence on the Frequency of Cloning Based Homologous Recombination (Target DNA 염기서열 내에 존재하는 비상동성 간격이 상동성재조합을 이용한 클로닝 빈도에 미치는 영향)

  • Kim Jae-Woo;Do Eun-Ju;Yoon Se-Lyun;Jeong Yun-Hee;Yoon Young-Ho;Leem Sun-Hee;Sunwoo Yangil;Park In-Ho
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.239-245
    • /
    • 2005
  • Transformation-Associated Recombination (TAR) cloning technique allows selective isolation of chromosomal regions and genes from complex genomes. The procedure requires knowledge of relatively small genomic sequences that reside adjacent to the chromosomal region of interest. This technique involves homologous recombination during yeast spheroplast transformation between genomic DNA and a TAR vector that has 5' and 3' gene targeting sequences. In this study, we examined the effect of non-homologous spacing sequence in target hooks on homologous recombination using a plasmid model system. The efficiency of homologous recombination between the modified his3-TRP1-his3 fragments and HlS3 gene on plasmid were analyzed by the characterization of $Ura^+$ transformants. The numbers of $Ura^+$ transformant showed same level when seven different modified his3-TRP1-his3 fragments were used. But the percentage of positive recombinants. $Trp^+His^-$, dramatically decreased when used the modified his3-TRP1-his3 fragments contained incorrect spacing of nonhomologous region. As a result, we suggest that incorrect spacing inhibits the homologous recombination between target hook and substrate DNA. Therefore, we should consider the correct spacing in target hook when the target hook are used for cloning of orthologue gene.

The Influence of Dehydrogenation Speed on the Microstructure and Magnetic Properties of Nd-Fe-B Magnets Prepared by HDDR Process

  • Cha, Hee-Ryoung;Yu, Ji-Hun;Baek, Youn-Kyoung;Kwon, Hae-Woong;Kim, Yang-Do;Lee, Jung-Goo
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • The influence regarding the dehydrogenation speed, at the desorption-recombination state during the hydrogenation-disproportionation-desorption-recombination (HDDR) process, on the microstructure and magnetic properties of Nd-Fe-B magnetic powders has been studied. Strip cast Nd-Fe-B-based alloys were subjected to the HDDR process after the homogenization heat treatment. During the desorption-recombination stage, both the pumping speed and time of hydrogen were systematically changed in order to control the speed of the desorption-recombination reaction. The magnetic properties of HDDR powders were improved as the pumping speed of hydrogen at the desorption-recombination stage was decreased. The lower pumping speed resulted in a smaller grain size and higher DoA. The coercivity and the remanence of the 200-300 ${\mu}m$ sized HDDR powder increased from 12.7 to 14.6 kOe and from 8.9 to 10.0 kG, respectively. In addition, the remanence was further increased to 11.8 kG by milling the powders down to about 25-90 ${\mu}m$, resulting in $(BH)_{max}$ of 28.8 MGOe.

Mec1 Modulates Interhomolog Crossover and Interplays with Tel1 at Post Double-Strand Break Stages

  • Lee, Min-Su;Joo, Jung Whan;Choi, Hyungseok;Kang, Hyun Ah;Kim, Keunpil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.469-475
    • /
    • 2020
  • During meiosis I, programmed DNA double-strand breaks (DSBs) occur to promote chromosome pairing and recombination between homologs. In Saccharomyces cerevisiae, Mec1 and Tel1, the orthologs of human ATR and ATM, respectively, regulate events upstream of the cell cycle checkpoint to initiate DNA repair. Tel1ATM and Mec1ATR are required for phosphorylating various meiotic proteins during recombination. This study aimed to investigate the role of Tel1ATM and Mec1ATR in meiotic prophase via physical analysis of recombination. Tel1ATM cooperated with Mec1ATR to mediate DSB-to-single end invasion transition, but negatively regulated DSB formation. Furthermore, Mec1ATR was required for the formation of interhomolog joint molecules from early prophase, thus establishing a recombination partner choice. Moreover, Mec1ATR specifically promoted crossover-fated DSB repair. Together, these results suggest that Tel1ATM and Mec1ATR function redundantly or independently in all post-DSB stages.

Ycs4 is Required for Efficient Double-Strand Break Formation and Homologous Recombination During Meiosis

  • Hong, Soogil;Choi, Eui-Hwan;Kim, Keun Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.7
    • /
    • pp.1026-1035
    • /
    • 2015
  • Condensin is not only responsible for chromosome condensation, but is also involved in double-strand break (DSB) processing in the cell cycle. During meiosis, the condensin complex serves as a component of the meiotic chromosome axis, and mediates both proper assembly of the synaptonemal complex and DSB repair, in order to ensure proper homologous chromosome segregation. Here, we used the budding yeast Saccharomyces cerevisiae to show that condensin participates in a variety of chromosome organization processes and exhibits crucial molecular functions that contribute to meiotic recombination during meiotic prophase I. We demonstrate that Ycs4 is required for efficient DSB formation and establishing homolog bias at the early stage of meiotic prophase I, which allows efficient formation of interhomolog recombination products. In the Ycs4 meiosis-specific allele (ycs4S), interhomolog products were formed at substantial levels, but with the same reduction in crossovers and noncrossovers. We further show that, in prophase chromosomal events, ycs4S relieved the defects in the progression of recombination interactions induced as a result of the absence of Rec8. These results suggest that condensin is a crucial coordinator of the recombination process and chromosome organization during meiosis.

Hed1 Promotes Meiotic Crossover Formation in Saccharomyces cerevisiae

  • Kong, Yoon-Ju;Joo, Jeong-Hwan;Kim, Keun Pil;Hong, Soogil
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.405-411
    • /
    • 2017
  • Homologous recombination occurs between homologous chromosomes and is significantly involved in programmed double-strand break (DSB) repair. Activation of two recombinases, Rad51 and Dmc1, is essential for an interhomolog bias during meiosis. Rad51 participates in both mitotic and meiotic recombination, and its strand exchange activity is regulated by an inhibitory factor during meiosis. Thus, activities of Rad51 and Dmc1 are coordinated to promote homolog bias. It has been reported that Hed1, a meiosis-specific protein in budding yeast, regulates Rad51-dependent recombination activity. Here, we investigated the role of Hed1 in meiotic recombination by ectopic expression of the protein after pre-meiotic replication in Saccharomyces cerevisiae. DNA physical analysis revealed that the overexpression of Hed1 delays the DSB-to-joint molecule (JM) transition and promotes interhomolog JM formation. The study indicates a possible role of Hed1 in controlling the strand exchange activity of Rad51 and, eventually, meiotic crossover formation.

Evaluation of hydrogen recombination characteristics of a PAR using SPARC PAR experimental results

  • Jongtae Kim;Jaehoon Jung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4382-4394
    • /
    • 2023
  • Passive auto-catalytic recombiners (PARs) are widely used to mitigate a hydrogen hazard. The first step to evaluate the hydrogen safety by PARs is to obtain qualified test data of the PARs for validation of their analytical model. SPARC PAR tests SP8 and SP9 were conducted to evaluate the hydrogen recombination characteristics of a honeycomb-shaped catalyst PAR. To obtain the hydrogen recombination rate from the PAR test data, two methods, Method-1 and Method-2, introduced by the THAI project, were applied. Since a large gradient of hydrogen concentration developed during hydrogen injection can cause a large error in the hydrogen mass obtained by integrating the measured hydrogen concentrations, a gate was installed at the PAR inlet to homogenize hydrogen in the test vessel before the PAR operation in the tests. A computational fluid dynamics (CFD) code with a PAR model was also applied to evaluate the characteristics of the PAR recombination according to the PAR inlet conditions, and the results were compared with those from Method-1 and Method-2. It was confirmed that the recombination rates from Method-1 require a correction factor to be compatible with results from Method-2 and the CFD simulation in the case of the SPARC-PAR tests.