• Title/Summary/Keyword: recombinant E. coli

Search Result 943, Processing Time 0.029 seconds

Production of Theileria sergenti recombinant protein by E coli expression system

  • Park, Jin-ho;Chae, Joon-seok;Kim, Dae-hyuk;Jang, Yong-suk;Kwon, Oh-deong;Lee, Joo-mook
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.4
    • /
    • pp.786-796
    • /
    • 1999
  • As an attempt to develop an effective control method against theileriosis, recombinant antigen protein was produced. Thirty-two kDa membrane protein(MP) gene of T sergenti was amplified through RT-PCR from extracted total RNA of T sergenti isolated in Chonbuk, Korea. The amplified 869 bp of Korean T sergenti membrane gene was cloned and the base sequences were analyzed. The amplified gene was cloned into E coli expression vector, pQE32 plasmid vector, and the vector was introduced into E coli strain M15 to produce the recombinant membrane protein. For the induction of T sergenti membrane protein(KTs-MP), the plasmid harboring E coli strain M15 were cultured in the presence of IPTG, and the recombinant protein were purified by $Ni^+$-NTA agarose. Then, to confirm the authenticity of the produced membrane protein, molecular weight of expressed recombinant KTs-MP was analyzed by SDS-PAGE and Western blotting. The molecular weight of expressed recombinant protein was 32 kDa as expected. The recombinant KTs-MP was successfully recognized by anti-His Tag antibody, antisera of T sergenti infected cattle and monoclonal antibody of T sergenti membrane protein. Therefore, we concluded that the authentic 32 kDa membrane protein of T sergenti was produced as immunologically recognizable form.

  • PDF

High Level Production of Supra Molecular Weight Poly(3-Hydroxybutyrate) by Metabolically Engineered Escherichia coli

  • Park, Jong-il;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.3
    • /
    • pp.196-200
    • /
    • 2004
  • The supra molecular weight poly(〔R〕-3-hydroxybutyrate) (PH B), having a molecular weight greater than 2 million Da, has recently been found to possess improved mechanical properties compared with the normal molecular weight PHB, which has a molecular weight of less than 1 million Da. However, applications for this PHB have been hampered due to the difficulty of its production. Reported here, is the development of a new metabolically engineered Escherichia coli strain and its fermentation for high level production of supra molecular weight PHB. Recombinant E. coli strains, harboring plasm ids of different copy numbers containing the Alcaligenes latus PHB biosynthesis genes, were cultured and the molecular weights of the accumulated PHB were compared. When the recombinant E. coli XL1-Blue, harboring a medium-copy-number pJC2 containing the A. latus PHB biosynthesis genes, was cultivated by fed-batch culture at pH 6.0, supra molecular weight PHB could be produced at up to 89.8 g/L with a productivity of 2.07 g PHB/L-h. The molecular weight of PHB obtained under these conditions was as high as 22 MDa, exceeding by an order of magnitude the molecular weight of PHB typically produced in Ralstonia eutropha or recombinant E. coli.

High-Level Expression of A Bacillus subtilis Mannanase Gene in Escherichia coli. (대장균에서 Bacillus subtilis의 Mannanase 유전자 과잉발현)

  • 권민아;손지영;윤기홍
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.3
    • /
    • pp.212-217
    • /
    • 2004
  • The gene coding for mannanase from Bacillus subtilis WL-7, a number of glycosyl hydrolase family 26, was hyperexpressed in Escherichia coli. Two recombinant plasmids, pE7MAN and pENS7, were constructed by introducing the complete mannanase gene and the mature mannanase gene lacking N-terminal signal peptide region into a expression vector pET24a(+), respectively. The level of mannanase produced by E. coli BL21 (DE3) carrying pENS7, which included the mature mannanase gene, was considerably higher than that by E. coli BL21 (DE3)/pE7MAN. Almost mannanase produced by the recombinant E. coli carrying pENS7 at growth temperature of $37^{\circ}C$ existed as inactive enzyme of insoluble form. Growth at temperature below $31^{\circ}C$ increased the soluble fraction of mannanase having catalytic activity in the recombinant E. coli cells. The highest productivity of active mannanase was observed in cell-free extract of the recombinant E. coli grown at growth temperature ranging from $25^{\circ}C$ to $28^{\circ}C$, while mannanase activity per soluble protein of the cell-free extract was highest in the cells grown at $^31{\circ}C$.

Enhancing the Solubility of Recombinant Akt1 in Escherichia coli with an Artificial Transcription Factor Library

  • Park Kyung-Soon;Lee Ho-Rim;Kim Jin-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.299-302
    • /
    • 2006
  • A combinatorial library of artificial transcription factors (ATFs) was introduced into the bacterial cells that expressed the Akt1-GFP fusion protein. By measuring the level of fluorescence generated by the transformed E. coli cells, we were able to obtain clones in which ATFs increased the solubility of the Akt1. Our results show that ATF library is a useful tool for increasing the solubility of selected recombinant proteins in E. coli.

Extracellular Overproduction of $\beta$-Cyclodextrin Glucanotransferase in a Recombinant E. coli Using Secretive Expression System

  • Lee, Kwang-Woo;Shin, Hyun-Dong;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.5
    • /
    • pp.753-759
    • /
    • 2002
  • $\beta$-Cyclodextrin glucanotransferase ($\beta$-CGTase) was overproduced extracellularly using recombinant E. coli by transforming the plasmid pECGT harboring a secretive signal peptide. The $\beta$-CGTase gene of alkalophilic Bacillus firmus var alkalophilus was inserted into the high expression vector pET20b(+) containing a secretive pelB signal peptide, and then transformed into E. coli BL2l(DE3)pLysS. The optimum culture conditions fer the overproduction of $\beta$-CGTase were determined to be TB medium containing 0.5% (w/v) soluble starch at post-induction temperature of $25^{\circ}C$. A significant amount of $\beta$-CGTase, up to 5.83 U/ml, which was nine times higher than that in the parent strain B. firmus var. alkalophilus, was overproduced in the extracellular compartment. A pH-stat fed-batch cultivation of the recombinant E. coli was also performed to achieve the secretive overproduction of $\beta$-CGTase at a high cell density, resulting in production of up to 21.6 U/ml of $\beta$-CGTase.

Antibacterial evaluation of recombinant lysozyme-HJP24 proteins against various bacterial pathogens, and of its possibility test as a feed additive in piglets (재조합 lysozyme-HJP34 단백질의 다양한 병원성 세균에 대한 항균 효능 및 자돈 사료첨가제의 가능성 평가)

  • Yu, Jeong-Hee;Yu, Yeong-Ju;Kim, Seon-Min;Hur, Jin
    • Korean Journal of Veterinary Service
    • /
    • v.44 no.4
    • /
    • pp.247-256
    • /
    • 2021
  • The recombinant lysozyme-HJL34 proteins were expressed and purified using commercial Escherichia (E.) coli expression system. Stx2e+ F18+ E. coli, Actinobacillus pleuropneumoniae (APP), Streptococcus (S.) suis, and Clostridium (C.) perfringens strains were isolated from pigs. The minimum inhibitory concentrations (MICs) of the recombinant lysozyme-HJP34 proteins were examined by means of the microtiter plate method, according to the NCCLS recommendations. The possibility of its as the alternatives to antibiotics was tested in piglets. The MICs were determined as 75 ㎍/mL, 300 ㎍/mL, 75 ㎍/mL, 35.5 ㎍/m against Stx2e+ F18+ E. coli, APP, S. suis, C. perfringens, respectively. A total of 25 piglets were divied 5 groups. The piglets in group A~C were fed with commercial feed and those in groups D, E were fed with commercial feedstuff. All piglets in groups B~E were challenged with virulent Stx2e+ F18+ E. coli, APP, S. suis strains. Groups C and D were treated with antimicrobial from 24 h after challenge. All piglets in group B died within 3 days after challenge. Among 5 piglets in groups C and D piglets, 80% survived after challenge. Among group E piglets, 60% were alive until the end of this study. Therefore, this study indicates that recombinant lysozyme-HJP34 proteins is a suitable possibility as a feed additive for reduction of diseases by bacterial pathogens in piglet feed.

Production of Toxin Protein by Recombinant Escherichia coli with a Thermally Inducible Expression System

  • Jong, Se-Han;Chang, Ho-Nam;Chang, Yong-Keun;Rhim, Seong-Lyul
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.6
    • /
    • pp.451-455
    • /
    • 1996
  • Physiological studies on the expression of Bacillus thuringiensis subsp. tenebrionis (Btt) gene coding for insecticidal protein in recombinant Escherichia coli 537 were carried out to identify optimal culture condition. It was necessary to shift culture temperature from 30 to $42^{\circ}C$ to express the gene. Expression of the Btt toxin gene by recombinant E. coli 537 began within one hour after induction. Complex nitrogen sources increased production of the insecticidal protein. The total insecticidal protein was 0.5 g/I when using yeast extract as a complex nitrogen source. Soybean hydrolysate showed apparently the highest induction efficiency. After induction, the cellular content of the insecticidal protein was 5.4 times higher than it had been before induction. The optimal cultivation strategy was found to grow cells for 7hours at $30^{\circ}C$ and then 5-8 hours at $42^{\circ}C$. The optimal cultivation pH for the production of insecticidal protein was 6.5. The Btt toxin produced by the recombinant E. coli 537 was found to have the same level of potency against Colorado potato beetle as the original toxin.

  • PDF

Effects of Host Cell on the Morphology and Solubility of CryI and CytA Protein of Bacillus thuringiensis (Bacillus thuringiensis의 CryI과 CytA 단백질의 형태와 용해도에 대한 숙주의 영향)

  • Kim, Moo-Key;Ahn, Byung-Koo
    • Applied Biological Chemistry
    • /
    • v.41 no.1
    • /
    • pp.23-30
    • /
    • 1998
  • The cryIB, truncated cryIB$[cryIB({\alpha})]$, cryIA(b), and cytA genes, encoding 135-, 89-, 131-, and 27-kDa proteins, respectively, from Bacillus thuringiensis were cloned into a shuttle vector pBES and expressed in E. coli and Bacillus species. The morphology and solubility in alkaline buffer of the insecticidal crystal proteins were investigated. Transformation of intact cells of E. coli and Bacillus species was achieved by electroporation. High field strength of 11.0 kV/cm and resistance of 129 ohms were required for efficient transformation of E. coli strains and 4.5 kV/cm and 48 ohms for Bacillus species. Strains of recombinant E. coli and Bacillus species produced the insecticidal crystal proteins and accumulated as the same bipyramidal and irregular structures as those of CryIB and IA(b) and CytA of B. thuringiensls, respectively. The insecticidal crystal proteins accumulated in recombinant E. coli wire smaller in size than those in recombinant Bacillus species. The solubility in alkaline buffer of the insecticidal crystal proteins of recombinant E. coli increased gradually as the pH increased, whereas in the case of Bacillus species the solubility increased gradually as the pH increased up to 9 and then the solubility increased greatly up to two times higher than that of E. coli proteins.

  • PDF

Engineering of a Microbial Cell Factory for the Extracellular Production of Catalytically Active Phospholipase A2 of Streptomyces violaceoruber

  • Lee, Hyun-Jae;Cho, Ara;Hwang, Yeji;Park, Jin-Byung;Kim, Sun-Ki
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.8
    • /
    • pp.1244-1251
    • /
    • 2020
  • Phospholipase A2 (PLA2) from Streptomyces violaceoruber is a lipolytic enzyme used in a wide range of industrial applications including production of lysolecithins and enzymatic degumming of edible oils. We have therefore investigated expression and secretion of PLA2 in two workhorse microbes, Pichia pastoris and Escherichia coli. The PLA2 was produced to an activity of 0.517 ± 0.012 U/ml in the culture broth of the recombinant P. pastoris. On the other hand, recombinant E. coli BL21 star (DE3), overexpressing the authentic PLA2 (P-PLA2), showed activity of 17.0 ± 1.3 U/ml in the intracellular fraction and 21.7 ± 0.7 U/ml in the culture broth. The extracellular PLA2 activity obtained with the recombinant E. coli system was 3.2-fold higher than the corresponding value reached in a previous study, which employed recombinant E. coli BL21 (DE3) overexpressing codon-optimized PLA2. Finally, we observed that the extracellular PLA2 from the recombinant E. coli P-PLA2 culture was able to hydrolyze 31.1 g/l of crude soybean lecithin, an industrial substrate, to a conversion yield of approximately 95%. The newly developed E. coli-based PLA2 expression system led to extracellular production of PLA2 to a productivity of 678 U/l·h, corresponding to 157-fold higher than that obtained with the P. pastoris-based system. This study will contribute to the extracellular production of a catalytically active PLA2.

Surface Display of Organophosphorus Hydrolase on E. coli Using N-Terminal Domain of Ice Nucleation Protein InaV

  • Khodi, Samaneh;Latifi, Ali Mohammad;Saadati, Mojtaba;Mirzaei, Morteza;Aghamollaei, Hossein
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.234-238
    • /
    • 2012
  • Recombinant Escherichia coli displaying organophosphorus hydrolase (OPH) was used to overcome the diffusion barrier limitation of organophosphorus pesticides. A new anchor system derived from the N-terminal domain of ice-nucleation protein from Pseudomonas syringae InaV (InaV-N) was used to display OPH onto the surface. The designed sequence was cloned in the vector pET-28a(+) and then was expressed in E. coli. Tracing of the expression location of the recombinant protein using SDS-PAGE showed the presentation of OPH by InaV-N on the outer membrane, and the ability of recombinant E. coli to utilize diazinon as the sole source of energy, without growth inhibition, indicated its significant activity. The location of OPH was detected by comparing the activity of the outer membrane fraction with the inner membrane and cytoplasm fractions. Studies revealed that recombinant E. coli can degrade 50% of 2 mM chlorpyrifos in 2 min. It can be concluded that InaV-N can be used efficiently to display foreign functional protein, and these results highlight the high potential of an engineered bacterium to be used in bioremediation of pesticide-contaminated sources in the environment.