• Title/Summary/Keyword: recombinant protein

Search Result 1,720, Processing Time 0.027 seconds

Biochemical Analysis of Interaction between Kringle Domains of Plasminogen and Prion Proteins with Q167R Mutation

  • Lee, Jeongmin;Lee, Byoung Woo;Kang, Hae-Eun;Choe, Kevine K.;Kwon, Moosik;Ryou, Chongsuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.1023-1031
    • /
    • 2017
  • The conformational change of cellular prion protein ($PrP^C$) to its misfolded counterpart, termed $PrP^{Sc}$, is mediated by a hypothesized cellular cofactor. This cofactor is believed to interact directly with certain amino acid residues of $PrP^C$. When these are mutated into cationic amino acid residues, $PrP^{Sc}$ formation and prion replication halt in a dominant negative (DN) manner, presumably due to strong binding of the cofactor to mutated $PrP^C$, designated as DN PrP mutants. Previous studies demonstrated that plasminogen and its kringle domains bind to PrP and accelerate $PrP^{Sc}$ generation. In this study, in vitro binding analysis of kringle domains of plasminogen to Q167R DN mutant PrP (PrPQ167R) was performed in parallel with the wild type (WT) and Q218K DN mutant PrP (PrPQ218K). The binding affinity of PrPQ167R was higher than that of WT PrP, but lower than that of PrPQ218K. Scatchard analysis further indicated that, like PrPQ218K and WT PrP, PrPQ167R interaction with plasminogen occurred at multiple sites, suggesting cooperativity in this interaction. Competitive binding analysis using $\small{L}$-lysine or $\small{L}$-arginine confirmed the increase of the specificity and binding affinity of the interaction as PrP acquired DN mutations. Circular dichroism spectroscopy demonstrated that the recombinant PrPs used in this study retained the ${\alpha}$-helix-rich structure. The ${\alpha}$-helix unfolding study revealed similar conformational stability for WT and DN-mutated PrPs. This study provides an additional piece of biochemical evidence concerning the interaction of plasminogen with DN mutant PrPs.

Purification of Recombinant CTP-Conjugated Human prostatic acid phosphatase for activation of Dendritic Cell (수지상세포 활성화를 위한 세포투과 펩타이드가 결합된 재조합 전립성 산성 인산분해효소의 정제)

  • Yi, Ki-Wan;Ryu, Kang
    • KSBB Journal
    • /
    • v.24 no.1
    • /
    • pp.80-88
    • /
    • 2009
  • Human prostatic acid phosphatase (PAP), with comprehensive homology to glandular kallikrein, are representative serum biomarkers of prostate cancer. Dendritic cell (DC), which is the potent antigen-presenting cells(APC) in the immune system, can induce strong T cell responses against viruses, microbial pathogens, and tumors. Therefore, the immunization using DC loaded with tumor-associated antigens is a powerful method for inducing anti-tumor immunity. The CTP (Cytoplasmic Transduction Peptide) technology developed by Creagene which can transport attached bio-polymers like nucleic acids or proteins into the cell with high permeation efficiency. As the active forms of PAP can mediate apoptotic processing, we used multimer forms of PAP as an inactive form for antigen pulsing of DCs. In this study, multimeric forms of CTP-rhPAP was obtained according to the advanced purification process and subsequently confirmed by gel filtration chromatography, western blot and Dynamic Light Scattering. Therefore, CTP-conjugated PA multimers transduced into the cytoplasm were efficiently presented on the cell surface without any harm effect on cells via MHC class I molecules and result in induction of a large number of effector cell.

Enhanced Production of hCTLA4Ig through Increased Permeability in Transgenic Rice Cell Cultures (형질전환 벼 현탁세포 배양에서 투과성 증진을 통한 hCTLA4Ig의 생산성 증대)

  • Choi, Hong-Yeol;Cheon, Su-Hwan;Kwon, Jun-Young;Lim, Jung-Ae;Park, Hye-Rim;Kim, Dong-Il
    • KSBB Journal
    • /
    • v.31 no.4
    • /
    • pp.277-283
    • /
    • 2016
  • In this system, rice cells were genetically modified to express human cytotoxic T-lymphocyte antigen 4-immunoglobulin (hCTLA4Ig) using RAmy3D promoter induced by sugar depletion. Even though the target protein fused with signal sequence peptide, plant cell wall can be a barrier against secretion of recombinant proteins. Therefore, hCTLA4Ig can be trapped inside cell wall or remained in intracellular space. In this study, to enhance the secretion of hCTLA4Ig from cytoplasm and cell walls into the medium, permeabilizing agents, such as dimethyl sulfoxide (DMSO), Triton X-100 and Tween 20, were applied in transgenic rice cell cultures. When 0.5% (v/v) of DMSO was added in sugar-free medium, intracellullar hCTLA4Ig was increased, on the other hand, the secreted extracellular hCTLA4Ig was lower than that of control. DMSO did not give permeable effects on transgenic rice cell cultures. And Triton X-100 was toxic to rice cells and also did not give enhancing permeability of cells. When 0.05% (v/v) Tween 20 was added in rice cell cultures, however, intracellular hCTLA4Ig was lower than that of control cultures. And the maximum 44.76 mg/L hCTLA4Ig was produced for 10 days after induction, which was 1.4-fold increase compared to that of control cultures. Especially, Tween 20 at 0.05% (v/v) showed the positive effect on the secretion of hCTLA4Ig though the decrease of intracellular hCTLA4Ig. Also, Tween 20 as a non-toxic surfactant did not affect the cell growth, cell viability and protease activity. In conclusion, secretion of hCTLA4Ig could be increased by enhancing permeability of cells regardless of the cell growth, cell viability and protease activity.

Isolation and Genetic Transformation of Primordial Germ Cell (PGC)-Derived Cells from Cattle, Goats, Rabbits and Rats

  • Lee, C.K.;Moore, K.;Scales, N.;Westhusin, M.;Newton, G.;Im, K.S.;Piedrahita, J.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.5
    • /
    • pp.587-594
    • /
    • 2000
  • At present embryonic stem (ES) cells with confirmed pluripotential properties are only available in the mouse. Recently, we were able to isolate, culture and genetically transform primordial germ cell (PGC)-derived cells from pig embryos and demonstrate their ability to contribute to chimera development in the pig. In order to determine whether the system we developed could be used to isolate embryonic germ (EG) cells from other mammalian species, we placed isolated PGCs from cattle, goats, rabbits and rats in culture. Briefly, PGCs were isolated from fetuses of cow (day 30-50), goat (day 25), rabbit (day 15-18) and rat (day 11-12), and plated on STO feeder cells in Dulbecco's modified Eagle's medium (DMEM): Ham's F10 medium (1:1) supplemented with 0.01 mM nonessential amino acids, 2 mM L-glutamine, 0.1 mM $\beta$ - mercaptoethnol, soluble recombinant human stem cell factor (SCF; 40ng/ml), human basic fibroblast growth factor (bFGF; 20ng/ml) and human leukemia inhibitory factor (LIF; 20ng/ml). For maintenance of the cells, colonies were passed to fresh feeders every 7-10 days. In all species tested, we were able to obtain and maintain colonies with ES-like morphology. Their developmental potential was tested by alkaline phosphatase (AP) staining and in vitro differentiation assay. For genetic transformation, cells were electroporated with a construct containing the green fluorescent protein (GFP) under the control of the cytomegalovirus (CMV) promoter. GFP-expressing colonies were detected in cattle, rabbits and rats. These results suggest that PGC-derived cells from cattle, goats, rabbits and rats can be isolated, cultured, and genetically transformed, and provide the basis for analyzing their developmental potential and their possible use for the precise genetic modification of these species.

Purification and Gene Analysis of Peptidyl Prolyl cia-trans Isomerase from Bacillus stearothermophilus (Bacillus stearothermophilus Peptidyl Prolyl cis-trans Isomerase의 정제 및 유전자 분석)

  • 김동주
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.104-111
    • /
    • 2002
  • The peptidyl prolyl sis-trans isomerase (PPIase, EC 5.2.1.8) from bacillus stearothermophilus was extracted from the cells treated with by lysozyme. PPIase was purified from the cell extracts by heat treatment, ammonium sulfate precipitation, ion exchange chromatography and finally gel filtration, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE). The molecular weight of the purified PPIase was estimated as 18kDa by SDS-PAGE. The 39 amino acid residues from the N-terminus were determined by the protein sequencer. The enzyme showed the optimum pH at 8.0 and was stable at the range of pH 7.0∼8.0. The enzyme was considerably stable after heat treatment at 60$\^{C}$ for 30minutes, and the enzyme was quite stable up to 65$\^{C}$. The presence of the PPIase in the refolding solution accelerated the isomerization rate of the assay peptide. PPIase gene of Bacillus stearothermophilus was screened from a genomic library by plaque hybridization using the A-l primer as a probe. A PPIase positive plaque contained a 3.0kb insert of the chromosomal DNA. A 3.0kb fragment was subcloned into pUC18, resulting pPI-40. A DNA fragment encoding the N-terminal portion of the PPIase in pPI-40 was amplified by polymerase chain reaction(PCR) method using the A-1 and B-2 primers. The amplified fragment was cloned into the Sma I site of pUC18 and recombinant plasmid was designated as pSN-18. The nucleotide sequence of 167bp fragment was determined. The deduced amino acid sequence of PPIase was completely matched with the determined N-terminal amino acid sequence of PPIase B. stearothermophilus.

The effect of immobilization of heparin and bone morphogenic protein-2 to bovine bone substitute on osteoblast-like cell's function

  • Huh, Jung-Bo;Kim, Sung-Eun;Song, Se-Kyung;Yun, Mi-Jung;Shim, Ji-Suk;Lee, Jeong-Yo;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.145-151
    • /
    • 2011
  • PURPOSE. This study was performed to investigate the ability of recombinant human-bone morphogenic protein-2 immobilized on a heparin-grafted bone substrate to enhance the osteoblastic functions. MATERIALS AND METHODS. The Bio-$Oss^{(R)}$, not coated with any material, was used as a control group. In rhBMP-2-Bio-$Oss^{(R)}$ group, rhBMP-2 was coated with Bio-$Oss^{(R)}$ using only deep and dry methods (50 ng/mL, 24 h). In heparinized rhBMP-2-Bio-$Oss^{(R)}$ group, dopamine was anchored to the surface of Bio-$Oss^{(R)}$, and coated with heparin. rhBMP-2 was immobilized onto the heparinized- Bio-$Oss^{(R)}$ surface. The release kinetics of the rhBMP-2-Bio-$Oss^{(R)}$ and heparinized rhBMP-2-Bio-$Oss^{(R)}$ were analyzed using an enzyme-linked immunosorbent assay. The biological activities of the MG63 cells on the three groups were investigated via cytotoxicity assay, cell proliferation assay, alkaline phosphatase (ALP) measurement, and calcium deposition determination. Statistical comparisons were carried out by one-way ANOVA test. Differences were considered statistically significant at $^*$P<.05 and $^{**}$P<.001. RESULTS. The heparinized rhBMP-2-Bio-$Oss^{(R)}$ showed more sustained release compared to the rhBMP-2-Bio-$Oss^{(R)}$ over an extended time. In the measurement of the ALP activity, the heparinized group showed a significantly higher ALP activity when compared with the non-heparinized groups (P<.05). The MG63 cells cultivated in the group with rhBMP-2 showed increased calcium deposition, and the MG63 cells from the heparinized group increased more than those that were cultivated in the non-heparinized groups. CONCLUSION. Heparin increased the rhBMP-2 release amount and made sustained release possible, and heparinized Bio-$Oss^{(R)}$ with rhBMP-2 successfully improved the osteoblastic functions.

Development of High-specificity Antibodies against Renal Urate Transporters Using Genetic Immunization

  • Xu, Guoshuang;Chen, Xiangmei;Wu, Di;Shi, Suozhu;Wang, Jianzhong;Ding, Rui;Hong, Quan;Feng, Zhe;Lin, Shupeng;Lu, Yang
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.696-702
    • /
    • 2006
  • Recently three proteins, playing central roles in the bidirectional transport of urate in renal proximal tubules, were identified: two members of the organic anion transporter (OAT) family, OAT1 and OAT3, and a protein that designated renal urate-anion exchanger (URAT1). Antibodies against these transporters are very important for investigating their expressions and functions. With the cytokine gene as a molecular adjuvant, genetic immunization-based antibody production offers several advantages including high specificity and high recognition to the native protein compared with current methods. We fused high antigenicity fragments of the three transporters to the plasmids pBQAP-TT containing T-cell epitopes and flanking regions from tetanus toxin, respectively. Gene gun immunization with these recombinant plasmids and two other adjuvant plasmids, which express granulocyte/macrophage colony-stimulating factor and FMS-like tyrosine kinase 3 ligand, induced high level immunoglobulin G antibodies, respectively. The native corresponding proteins of URAT1, OAT1 and OAT3, in human kidney can be recognized by their specific antibodies, respectively, with Western blot analysis and immunohistochemistry. Besides, URAT1 expression in Xenopus oocytes can also be recognized by its corresponding antibody with immuno-fluorescence. The successful production of the antibodies has provided an important tool for the study of UA transporters.

Expression and Optimum Production of Cyclodextrin Glucanotransferase Gene of Paenibacillus sp. JB-13 in E. coli (Paenibacillus sp. JB-13 Cyclodextrin Glucanotransferase 유전자의 E. coli 에서의 발현 및 최적 생산)

  • Kim, Hae-Yun;Lee, Sang-Hyeon;Kim, Hae-Nam;Min, Bok-Kee;Baik, Hyung-Suk;Jun, Hong-Ki
    • Korean Journal of Microbiology
    • /
    • v.44 no.1
    • /
    • pp.74-79
    • /
    • 2008
  • The purpose of this study is to clone cgt gene from Paenibacillus sp. JB-13 and to overexpress the protein in E. coli. For this purpose, the cgt gene was amplified from Paenibacillus sp. JB-13 genomic DNA by PCR using degenerate oligonucleotide primers. The sequence analysis results showed that the cgt gene from Paenibacillus sp. JB-13 has 98% homology with the cgt gene of Bacillus sp. To overexpress the protein, the cgt gene was cloned into pEXP7 expression vector and transformed into E. coli. The production of CGTase by recombinant E. coli was optimized under following conditions: 0.5% glucose, 3.0% polypeptone, 0.3% $K_2HPO_4$, 0.5% NaCl, and 7.0 of initial pH, 2.0% of inoculum, $37^{\circ}C$ of culture temperature for 14 hr. And the optimal agitation was found at 0.1 vvm. The synthesis of 2-O-${\alpha}$-D-Glucopyranosyl L-Ascorbic acid (AA-2G) using the CGTase expressed in E. coli was identified as AA-2G by HPLC and HPLC confirmed that treating AA-2G made by cloned CGTase with ${\alpha}$-glucosidase substantially produced AA and glucose.

Characterization of a New ${\beta}$-Lactamase Gene from Isolates of Vibrio spp. in Korea

  • Jun, Lyu-Jin;Kim, Jae-Hoon;Jin, Ji-Woong;Jeong, Hyun-Do
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.4
    • /
    • pp.555-562
    • /
    • 2012
  • PCR was performed to analyze the ${\beta}$-lactamase genes carried by ampicillin-resistant Vibrio spp. strains isolated from marine environments in Korea between 2006 and 2009. All 36 strains tested showed negative results in PCR with the primers designed from the nucleotide sequences of various known ${\beta}$-lactamase genes. This prompted us to screen new ${\beta}$-lactamase genes. A novel ${\beta}$-lactamase gene was cloned from Vibrio alginolyticus KV3 isolated from the aquaculture water of Geoje Island of Korea. The determined nucleotide sequence (VAK-3 ${\beta}$-lactamase) revealed an open reading frame (ORF) of 852 bp, encoding a protein of 283 amino acids (aa), which displayed low homology to any other ${\beta}$-lactamase genes reported in public databases. The deduced 283 aa sequence of VAK-3, consisting of a 19 aa signal peptide and a 264 aa mature protein, contained highly conserved peptide segments specific to class A ${\beta}$-lactamases including the specific amino acid residues STFK (62-65), SDN (122-124), E (158), and RTG (226-228). Results from PCR performed with primers specific to the VAK-3 ${\beta}$-lactamase gene identified 3 of the 36 isolated strains as V. alginolyticus, Vibrio cholerae, and Photobacterium damselae subsp. damselae, indicating the utilization of various ${\beta}$-lactamase genes including unidentified ones in ampicillin-resistant Vibrio spp. strains from the marine environment. In a mating experiment, none of the isolates transfered the VAK-3 ${\beta}$-lactamase gene to the Escherichia coli recipient. This lack of mobility, and the presence of a chromosomal acyl-CoA flanking sequence upstream of the VAK-3 ${\beta}$-lactamase gene, led to the assumption that the location of this new ${\beta}$-lactamase gene was in the chromosome, rather than the mobile plasmid. Antibiotic susceptibility of VAK-3 ${\beta}$-lactamase was indicated by elevated levels of resistance to penicillins, but not to cephalosporins in the wild type and E. coli harboring recombinant plasmid pKV-3, compared with those of the host strain alone. Phylogenetic analysis showed that VAK-3 ${\beta}$-lactamase is a new and separate member of class A ${\beta}$-lactamases.

Overproduction and High Level Secretion of Glucose Oxidase in Saccharomyces cerevisiae (Glucose Oxidase의 Saccharomyces cerevisiae에서의 대량생산 및 고효율 분비)

  • 홍성용;최희경;이영호;백운화;정준기
    • Microbiology and Biotechnology Letters
    • /
    • v.26 no.1
    • /
    • pp.68-75
    • /
    • 1998
  • The overproduction and high level secretion of Glucose Oxidase (GOD) from A. niger in S. cerevisiae was carried out by cloning GOD gene. For this purpose, using two different strong promoters (ADH1 promoter, GAL10 promoter) and signal sequences (${alpha}$-MF signal sequence of S. cerevisiae and ${alpha}$-amylase signal sequence of A. oryzae) and GAL7- and GOD terminator, four expression vectors were constructed. All the expression vectors were transformed in S. cerevisiae 2805 using auxotroph method. By the flask culture, transformants of pGAL expression vector series containing GAL 10 promotor showed much higher GOD productivity than transformants of pADH expression vector series containing ADH1 promoter Transformants of pGALGO2 containing GAL10 promotor and ${alpha}$-amylase signal sequence has shown the best productivity of GOD ($GOD_{total}$: 10.3 unit/mL, $GOD_{ex}$: 8.7 unit/mL) at 115 hr. This value was three fold higher than that of pGALGO1 containing GAL 10 promotor and ${alpha}$-MF signal sequence, even if the same promotor was involved. Through the ${alpha}$-amylase signal sequence of A. oryzae, GOD was secreted much more than the case of ${alpha}$-MF signal sequence from S. cerevisiae. These results suggest that signal sequence may play a important roles in not only the secretion but also the overproduction of foreign protein. Secretion rate of GOD in pGALGO1 and pGALGO2 was 89% and 84%, respectively, Because of the overglycosylation in S. cerevisiae the molecular weight of recombinant GOD in S. cerevisiae was much larger (250 kDa) than that of nature GOD in A. niger (170 kDa).

  • PDF