• 제목/요약/키워드: recognition algorithm

검색결과 3,560건 처리시간 0.037초

문화콘텐츠 빅데이터를 이용한 주가 변수 선행성 분석 (Analysis of the Precedence of Stock Price Variables Using Cultural Content Big Data)

  • 유재필;이지영;정정영
    • 한국콘텐츠학회논문지
    • /
    • 제22권4호
    • /
    • pp.222-230
    • /
    • 2022
  • 최근 한국의 문화콘텐츠 산업이 발전하고 있는 가운데 전 세계적으로 인지도가 높아질 수 있는 배경에는 과학 기술의 발전으로 글로벌 네트워크 사용자들의 실시간 공유 서비스가 있다. 특히 유튜브의 경우에는 한정적인 사용자가 아닌 모든 사람이 잠재적인 영상 제공자가 될 수 있다는 점에서 그 전파력은 빠르고 강력하다. 국내에도 휴대폰 사용자의 약 80% 이상이 유튜브를 이용하고 있는 것으로 나타난 만큼 유튜브의 정보는 사용자의 심리적 요인이 반영되고 있다는 것을 의미한다. 예컨대 특정 성격을 갖고 있는 채널의 영상 조회 수, 좋아요 수 그리고 댓글 수와 같은 정보는 그 채널이 갖는 성격의 관심도에 대한 척도를 보여준다. 이는 포털 사이트의 키워드 검색 빈도와 같은 정보가 경제 심리학적으로 주가 시장과 밀접한 연관이 있다는 것과 관련성이 높다. 따라서 본 연구에서는 대표 엔터테이먼트 사의 유튜브 정보를 크롤링 알고리즘을 통해 수집하고 이를 주가와 관련된 주요 변수와 인과 관계에 대해서 분석한다. 그 결과 유튜브의 관심도는 주가, 주가 변동성 그리고 거래량에 선행적 인과 관계를 보인다는 것을 입증했다. 본 연구는 4차 산업 시대에 맞게 문화콘텐츠, IT 그리고 금융 분야를 접목해서 연구를 진행했다는 점에서 의의가 있다고 사료된다.

군집 로봇의 임무 검증 지원을 위한 디지털 트윈 기반 통신 최적화 기법 (Digital Twin-Based Communication Optimization Method for Mission Validation of Swarm Robot)

  • 김관혁;김한진;권준형;하범수;허석행;구지훈;손호정;김원태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.9-16
    • /
    • 2023
  • 로봇은 군사 분야로까지 활용 범위를 넓히며 다가올 미래전에서 감시경계, 적군 탐지 등 중요한 임무를 맡게 될 것으로 전망된다. 군집 로봇은 다수라는 장점으로 단일 로봇이 수행하기 어렵거나 오랜 시간이 소요된 임무를 보다 효율적으로 수행할 수 있다. 상호 간 인지 및 협업이 필수인 군집 로봇은 방대한 데이터를 주고 받으며, 이로 인해 SW의 검증이 점점 더 어려워지고 있다. 임무 검증의 신뢰성을 높이기 위해 사용하는 Hardware-in-the-loop simulation은 복잡한 군집 로봇의 SW 검증을 가능하게 하나, HILS 장치와 시뮬레이터 간 주고 받는 검증 데이터의 양이 검증 대상 시스템 수에 따라 기하급수적으로 증가하여 통신 과부하가 발생할 수 있다. 본 논문에서는 군집 로봇의 임무 검증에서 발생하는 통신 과부하 문제를 해소하기 위해 디지털 트윈 기반의 통신 최적화 기법을 제안한다. 제안하는 Digital Twin based Multi HILS Framework 하에서 Network DT은 Network Controller 알고리즘을 통해 임무 시나리오에 따라 각 로봇에게 네트워크 자원을 효율적으로 할당할 수 있으며, 군집에 참여하는 개별 로봇들이 요구하는 Sensor Generation Rate를 모두 만족시킬 수 있음을 확인하였다. 또한 데이터 전송에 대한 실험 결과 패킷 손실 비율을 기존 15.7%에서 약 0.2%로 감소시킬 수 있었다.

계층적 군집분석을 이용한 반도체 웨이퍼의 불량 및 불량 패턴 탐지 (Wafer bin map failure pattern recognition using hierarchical clustering)

  • 정주원;정윤서
    • 응용통계연구
    • /
    • 제35권3호
    • /
    • pp.407-419
    • /
    • 2022
  • 반도체는 제조 공정이 복잡하고 길어 결함이 발생될 때 빠른 탐지와 조치가 이뤄져야 결함으로 인한 손실을 최소화할 수 있다. 테스트 공정을 거쳐 구성된 웨이퍼 빈 맵(WBM)의 체계적인 패턴을 탐지하고 분류함으로써 문제의 원인을 유추할 수 있다. 이 작업은 수작업으로 이뤄지기 때문에 대량의 웨이퍼를 단 시간에 처리하는 데 한계가 있다. 본 논문은 웨이퍼 빈 맵의 정상 여부를 구분하기 위해 계층적 군집 분석을 활용한 새로운 결함 패턴 탐지 방법을 제시한다. 제시하는 방법은 여러 장점이 있다. 군집의 수를 알 필요가 없으며 군집분석의 조율 모수가 적고 직관적이다. 동일한 크기의 웨이퍼와 다이(die)에서는 동일한 조율 모수를 가지므로 대량의 웨이퍼도 빠르게 결함을 탐지할 수 있다. 소량의 결함 데이터만 있어도 그리고 데이터의 결함비율을 가정하지 않더라도 기계학습 모형을 훈련할 수 있다. 제조 특성상 결함 데이터는 구하기 어렵고 결함의 비율이 수시로 바뀔 수 있기 때문에 필요하다. 또한 신규 패턴 발생시에도 안정적으로 탐지한다. 대만 반도체 기업에서 공개한 실제 웨이퍼 빈 맵 데이터(WM-811K)로 실험하였다. 계층적 군집 분석을 이용한 결함 패턴탐지는 불량의 재현율이 96.31%로 기존의 공간 필터(spatial filter)보다 우수함을 보여준다. 결함 분류는 혼합 유형에 장점이 있는 계층적 군집 분석을 그대로 사용한다. 직선형과 곡선형의 긁힘(scratch) 결함의 특징에 각각 주성분 분석의 고유값과 2차 다항식의 결정계수를 이용하고 랜덤 포레스트 분류기를 이용한다.

빅데이터 토픽모델링과 감성분석을 활용한 물공급과정에서의 수질사고 기사 분석 (Analysis of articles on water quality accidents in the water distribution networks using big data topic modelling and sentiment analysis)

  • 홍성진;유도근
    • 한국수자원학회논문집
    • /
    • 제55권spc1호
    • /
    • pp.1235-1249
    • /
    • 2022
  • 본 연구에서는 웹 크롤링 방법을 이용한 자료수집, 텍스트 마이닝을 활용한 데이터 분석과 같은 빅데이터 분석기법을 이용하여 국내 상수도 수질사고에 대한 전개양상 분석을 수행하였다. 상수도 시스템의 수질사고 빅데이터 뉴스의 추출을 위한 웹크롤링 기법을 적용하고 정확한 수질사고 뉴스를 획득하고자 알고리즘을 절차화하여 제시하였다. 또한 대규모 수질사고의 경우 사고발생에 따른 사고인지, 사고확산, 사고대응, 사고해결 등과 같은 전개양상이 나타나므로, 각 단계에 따른 적절한 뉴스기사를 추출하고, 이에 따른 정보분석을 실시하였다. 즉, 각 단계 별 주요 키워드, 감성분석을 통한 수질사고 전개양상분석을 사례기반으로 상세히 실시하고 그 의미를 분석, 도출하였다. 제안된 방법론을 2020년 발생한 인천광역시 유충사고기간에 적용하여 분석하였다. 그 결과, 수질사고와 같은 소비자에게 직접적인 영향을 미치는 정보의 공개가 제한된 상황에서 사고발생시 장기간의 피해 지속성이 있는 수질사고에 대한 뉴스 기사 언론보도의 논조 및 소비자의 긍부정도가 시간에 따라 명확히 변화됨을 확인할 수 있었다. 이것은 공급자 입장에서의 수질사고의 전개양상은 시설물의 빠른 복구도 매우 중요하지만 소비자의 긍정도를 높이기 위한 소비자 중심의 정책마련의 필요성을 제시하고 있다.

이미지 처리를 이용한 아날로그 게이지 디지털화에 관한 연구 (The Study of Digitalization of Analog Gauge using Image Processing)

  • 김선덕;배철오;박경민;지재훈
    • 해양환경안전학회지
    • /
    • 제29권4호
    • /
    • pp.389-394
    • /
    • 2023
  • 근래 산업은 기계 자동화로 변화하고 있는 추세이며, 선박도 센서를 통해 기기 정보를 디지털 정보로 얻는다. 하지만 선박은 기기상태 점검을 위해 선원들이 정해진 시간마다 기관실을 순찰하며 기기들의 정보를 아날로그 게이지를 통해 확인하는데, 이는 순찰 중에 선원에게 발생할 수 있는 모든 안전 위험은 물론 시간과 기회비용 또한 소모된다. 자율이동로봇을 이용한 기관실 순찰 방법은 선원의 안전 위험은 물론 시간과 기회비용도 소모되지 않기 때문에 해결책으로 활발히 연구 중이다. 자율이동로봇을 이용한 아날로그 게이지 판독은 로봇이 게이지를 인식하기 위한 디지털화가 필요하다. 이를 위해 본 연구에서는 이미지 처리를 이용하였다. 아날로그 게이지 이미지는 이미지 전처리를 통해 노이즈 제거 및 특징을 부각 시켰다. 이미지 전처리를 완료한 이미지는 이미지 처리를 통해 아날로그 게이지의 중심점, 지침점, 최소값 및 최대값을 검출하였다. 이 점들을 연결한 직선을 통해 최소값부터 최대값까지의 각도 및 최소값부터 지침점까지의 각도를 획득하였다. 각도는 수식을 통해 현재 아날로그 게이지가 나타내고 있는 값을 디지털화하여 나타내었다. 실험을 통해 이미지 처리를 통한 아날로그 게이지의 디지털화가 잘되어 게이지의 현재 지시값을 근사하게 나타냄을 확인할 수 있었다. 본 알고리즘을 순찰로봇에 적용한다면 기관실 순찰을 위한 선원의 안전 위험 및 시간과 기회비용까지 보전 할 수 있을 것으로 사료된다.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권1호
    • /
    • pp.21-30
    • /
    • 2024
  • 본 논문에서는 자율협력주행 인프라를 위해 제작된 8가지 센서 전용 시설물들에 대해 라이다로 취득한 포인트 클라우드 데이터로부터 시설물들의 특징을 추출하여 샘플 데이터셋으로 구축하는 방법을 제안한다. 고휘도 반사지가 부착된 8가지 센서 전용 시설물들과 데이터 취득 시스템을 개발했고, 취득된 포인트 클라우드 데이터로부터 일정한 측정 거리 내에 위치한 시설물들의 특징을 추출하기 위해 포인트 대상의 DBSCAN 방법과 반사강도 대상의 OTSU 방법을 응용하여 추려낸 포인트들에 원통형 투영법을 적용했다. 3차원 포인트 좌표, 2차원 투영 좌표, 그리고 반사강도 등을 해당 시설물의 특징으로 설정했고, 정답 레이블과 함께 데이터셋으로 제작했다. 라이다로 취득한 데이터를 기반으로 구축된 시설물 데이터셋의 효용 가능성을 확인하기 위해서 기본적인 CNN 모델을 선정하여 학습 후 테스트를 진행하여 대략 90% 이상의 정확도를 보여 시설물 인식 가능성을 확인했다. 지속적인 실험을 통해 제시한 데이터셋 구축을 위한 특징 추출 알고리즘의 개선 및 성능 향상과 더불어 이에 적합한 자율협력주행을 위한 센서 전용 시설물을 인식할 수 있는 전용 모델을 개발할 예정이다.

환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구 (A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement)

  • 정승민;정의성;김명환
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 논문에서는 환자와 같은 특정 객체의 움직임을 감지하고 추적하기 위한 효율적인 영상처리 시스템을 제안한다. 이진화된 차 영상에서 객체의 윤곽선추출을 위하여 기존 알고리즘대비 대비 정밀한 감지가 가능하고 혼성모드설계에 용이한 세선화 알고리즘을 적용하여 영역을 추출한다. 연산량이 많은 이진화와 세선화 단계를 RTL(Register Transfer Level) 기반으로 설계하여 논리회로 합성을 거쳐 최적화된 하드웨어 블록으로 대체된다. 설계된 이진화 및 세선화 블록은 표준 180n CMOS 라이브러리를 이용하여 논리회로로 합성한 후 시뮬레이션을 통하여 동작을 검증하였다. 소프트웨어기반의 성능비교를 위해 32bit FPGA 임베디드시스템 환경에서 640 × 360 해상도의 샘플 영상을 적용하여 이진 및 세선화 연산에 대한 성능분석도 실시하였다. 검증결과 혼성모드 설계가 이전의 소프트웨어로만 이루어지는 처리속도에서 이진 및 세선화 단계에서 93.8% 향상될 수 있음을 확인하였다. 제안된 객체인식을 위한 혼성모드 시스템은 인공지능 네트워크가 적용되지 않는 엣지 컴퓨팅 환경에서도 환자의 움직임을 효율적으로 감시할 수 있을 것으로 기대된다.

시계열 신호 통계량 기반 캐비테이션 신호 탐지 (Cavitation signal detection based on time-series signal statistics)

  • 양해상;최하민;이석규;성우제
    • 한국음향학회지
    • /
    • 제43권4호
    • /
    • pp.400-405
    • /
    • 2024
  • 선박 프로펠러 캐비테이션 소음이 발생하면 수중 방사 소음의 수준이 급격히 상승하는데, 특히 함정의 경우에 피탐지 확률이 증가해 치명적인 위협 요인이 될 수 있다. 따라서 함정의 생존성 향상을 위하여 캐비테이션 신호를 정확하고 신속하게 판단하는 것이 매우 중요한데, 종래에는 센서로 계측한 음압/진동 준위가 기준값 이상이면 캐비테이션 발생으로 판단하는 기술과 데몬 기법을 통해 캐비테이션 발생 여부를 판별하는 방법이 주로 수행되었다. 그러나 이와 관련된 기술은 캐비테이션의 발생 현상에 대한 물리적 이해와 사용자의 주관적 기준을 기반으로 수행되며 여러 절차를 거치기 때문에 캐비테이션 신호를 조기에 자동으로 인식하는 기법의 개발이 필요하다. 본 논문에서는 선체에 부착된 음향 센서를 이용하여 계측된 음향 신호로부터 캐비테이션 신호의 특징을 반영한 간단한 통계량 기반 특징을 추출하고 이로부터 캐비테이션 발생 여부를 자동으로 판단하는 알고리즘을 제안한다. 제안된 기법의 성능은 센서 수와 모형 시험 조건에 따라 평가하는데, 단일 센서로 계측된 신호에 캐비테이션의 특징을 충분히 반영하여 훈련하면 캐비테이션 신호의 발생 여부를 판단 가능함을 확인했다.

Improving Test Accuracy on the MNIST Dataset using a Simple CNN with Batch Normalization

  • Seungbin Lee;Jungsoo Rhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권9호
    • /
    • pp.1-7
    • /
    • 2024
  • 본 논문은 MNIST 데이터셋을 활용한 손글씨 숫자 인식에서 합성곱 신경망(CNN)과 배치정규화(BN)를 결합한 모델을 제안한다. LeCun et al.의 LeNet-5 모델의 성과를 뛰어넘는 것을 목표로 6계층 신경망 구조를 설계하였다. 제안된 모델은 28×28 픽셀 이미지를 입력으로 받아 합성곱, 맥스 풀링, 완전연결계층을 거쳐 처리하며, 특히 배치정규화계층을 도입하여 학습 안정성과 성능을 향상시켰다. 실험에서는 60,000개의 훈련 이미지와 10,000개의 테스트 이미지를 사용하였으며, Momentum 최적화 알고리즘을 적용하였다. 모델 구성에서는 30개의 필터, 필터 사이즈 5×5, 패딩 0, 스트라이드 1을 사용하였고, ReLU 활성화 함수를 채택하였다. 훈련 과정에서는 미니배치 사이즈 100, 총 20 에포크, 학습률 0.1로 설정하였다. 결과적으로 제안된 모델은 99.22%의 테스트 정확도를 달성하여 LeNet-5의 99.05%를 상회하였으며, F1-score 0.9919를 기록하여 모델의 성능을 입증하였다. 또한, 본 논문에서 제안한 6계층 모델은 LeCun et al.의 LeNet-5(7계층 모델)와 Ji, Chun and Kim(10계층 모델)이 제안한 모델보다 더 단순한 구조로 모델의 효율성을 강조하였다. 본 연구의 결과는 AI 비전 검사기 등 실제 산업 응용에서 활용 가능성을 보여주며, 특히 스마트팩토리에서 부품의 불량 상태를 판별하는 데 효과적으로 적용될 수 있을 것으로 기대된다.

상처와 주름이 있는 지문 판별에 효율적인 심층 학습 비교연구 (A Comparative Study on the Effective Deep Learning for Fingerprint Recognition with Scar and Wrinkle)

  • 김준섭;림빈 보니카;성낙준;홍민
    • 인터넷정보학회논문지
    • /
    • 제21권4호
    • /
    • pp.17-23
    • /
    • 2020
  • 인간의 특성과 관련된 측정 항목을 나타내는 생체정보는 도난이나 분실의 염려가 없으므로 높은 신뢰성을 가진 보안 기술로서 큰 주목을 받고 있다. 이러한 생체정보 중 지문은 본인 인증, 신원 파악 등의 분야에 주로 사용된다. 신원을 파악할 때 지문 이미지에 인증을 수행하기 어려운 상처, 주름, 습기 등의 문제가 있을 경우, 지문 전문가가 전처리단계를 통해 직접 지문에 어떠한 문제가 있는지 파악하고 문제에 맞는 영상처리 알고리즘을 적용해 문제를 해결한다. 이때 지문에 상처와 주름이 있는 지문 영상을 판별해주는 인공지능 소프트웨어를 구현하면 손쉽게 상처나 주름의 여부를 확인할 수 있고, 알맞은 알고리즘을 선정해 쉽게 지문 이미지를 개선할 수 있다. 본 연구에서는 이러한 인공지능 소프트웨어의 개발을 위해 캄보디아 왕립대학교의 학생 1,010명, Sokoto 오픈 데이터셋 600명, 국내 학생 98명의 모든 손가락 지문을 취득해 총 17,080개의 지문 데이터베이스를 구축했다. 구축한 데이터베이스에서 상처나 주름이 있는 경우를 판별하기 위해 기준을 확립하고 전문가의 검증을 거쳐 데이터 어노테이션을 진행했다. 트레이닝 데이터셋과 테스트 데이터셋은 캄보디아의 데이터, Sokoto 데이터로 구성하였으며 비율을 8:2로 설정했다. 그리고 국내 학생 98명의 데이터를 검증 데이터 셋으로 설정했다, 구성된 데이터셋을 사용해 Classic CNN, AlexNet, VGG-16, Resnet50, Yolo v3 등의 다섯 가지 CNN 기반 아키텍처를 구현해 학습을 진행했으며 지문의 상처와 주름 판독에서 가장 좋은 성능을 보이는 모델을 찾는 연구를 수행했다. 다섯가지 아키텍처 중 지문 영상에서 상처와 주름 여부를 가장 잘 판별할 수 있는 아키텍처는 ResNet50으로 검증 결과 81.51%로 가장 좋은 성능을 보였다.