• 제목/요약/키워드: reclaimed tidal land soil

검색결과 79건 처리시간 0.025초

Salt Removal in a Reclaimed Tidal Land Soil with Gypsum, Compost, and Phosphate Amendment

  • Lee, Jeong-Eun;Seo, Dong-Hyuk;Yun, Seok-In
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.326-331
    • /
    • 2015
  • High salinity and sodicity of soils play a negative role in producing crops in reclaimed tidal lands. To evaluate the effects of soil ameliorants on salt removal in a highly saline and sodic soil of reclaimed tidal land, we conducted a column experiment with treating gypsum, compost, and phosphate at 0-2 cm depth and measured the salt concentration of leachate and soil. Electrical conductivity of leachate was $45-48dSm^{-1}$ at 1 pore volume (PV) of water and decreased to less than $3dSm^{-1}$ at 3 PV of water. Gypsum significantly decreased SAR (sodium adsorption ratio) of leachate below 3 at 3 PV of water and soil ESP (exchangeable sodium percentage) below 3% for the whole profile of soil column. Compost significantly decreased ESP of soil at 0-5 cm depth to 5% compared with the control (20%). However, compost affected little the composition of cations below a depth of 5 cm and in leachate compared with control treatment. It was concluded that gypsum was effective in ameliorating reclaimed tidal lands at and below a soil layer receiving gypsum while compost worked only at a soil layer where compost was treated.

신간척지 벼 재배 농지의 답전윤환에 따른 토양 특성 및 작물 생산성 변화 (Effects of Paddy-Upland Rotation on Soil Characteristics and Crop Productivity in Rice Fields on Reclaimed Tidal land)

  • 오양열;김영주;이수환;류진희;김선;이정태;전재범;김길용
    • 한국환경과학회지
    • /
    • 제27권8호
    • /
    • pp.641-650
    • /
    • 2018
  • Paddy-upland rotation system is one of the important cropping system for improving soil quality and crop productivity. we conducted to investigate the effect of paddy-upland rotation system on soil properties and crop productivity in reclaimed tidal land. The paddy-upland rotation could be effective to conserve soil water contents and prevent from salt damage when cultivating upland crops. The first two years of maize cultivation after rice cultivation could be effective to secure stable production. However, in case of soybean crop, the rotation effect might be lower than that of maize. In the first year, the yield of soybean was 214 kg/10a. In the second and third year, the yields of soybean decreased consecutively to 152, 123 kg/10a respectively. In this paper, it would be suggested that maize be cultivated for up to two years and soybean be cultivated for one year after rice crop grown in reclaimed tidal land. This study could be provide basic data of the physico-chemical properties applicable to paddy-upland rotation system at reclaimed tidal lands.

Natural Ripening versus Artificial Enhancing of Silty Reclaimed Tidal Soils for Upland Cropping Tested by Profile Characterization

  • Ibrahim, Muhammad;Han, Kyung-Hwa;Lee, Kyung-Do;Youn, Kwan-Hee;Ha, Sang-Keun;Zhang, Yong-Seon;Hur, Seung-Oh;Yoon, Sung-Won;Cho, Hee-Rae
    • 한국토양비료학회지
    • /
    • 제45권1호
    • /
    • pp.9-15
    • /
    • 2012
  • This study was performed to produce basic data for silty reclaimed tidal lands and to develop techniques of environmentally-friendly utilization in agricultural system. We chose the two sites in Saemangeum reclaimed tidal lands, one (Site I) has been treated with cultivating green manure and conducting the desalinization process through submergence since April, 2007 and the other (Site II) has been under natural condition without artificial treatment. In situ and ex situ physic-chemical properties were determined and comparisons were made for soil profiles examined at these two sites in April 2009. Surface soil of Site I had lower EC and higher field saturated hydraulic conductivity than those of Site II, uncultivated land. Especially, exchangeable sodium content was lowest in Site I Ap1 layer than in other layers. This is probably due to flooding desalination and green manure cultivation. Besides, Ap1 and A2 layers of soil profile in Site I showed brighter soil color and more root observation than those of Site II. This is probably due to green manure cultivation. By the large, for high cash upland crops and intensive agricultural use of silty reclaimed tidal land, site-specific soil ripening such as flooding desalination and green manure cultivation could be useful.

Effect of Soil Salinity Levels on Silage Barley Growth at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Soo;Lee, Soo-Hwan;Kang, Jong-Gook;Kim, Hong-Kyu;Lee, Kyeong-Bo;Park, Ki-Hoon
    • 한국토양비료학회지
    • /
    • 제46권5호
    • /
    • pp.365-372
    • /
    • 2013
  • Crop development and nutrient availability are strongly influenced by soil salinity levels. This study was conducted to investigate the effect of rice straw and nitrogen (N) fertilizer for silage barley under various soil salinity levels at Saemangeum reclaimed tidal land. Three levels of rice straw (0, 2.5, 5.0 ton rice straw $ha^{-1}$) and N (0, 150, 225 kg N $ha^{-1}$) were applied at 0.04, 0.23, 0.35% soil salinity levels. Biomass yield of silage barley was influenced by the interactions between rice straw application and N fertilization. Although there was no single effect of rice straw application on biomass yield, it was significantly increased with N application and a rice straw application of 5.0 ton $ha^{-1}$. Sodium content in silage barley was significantly lower at 0.04% salinity level, and but it was statistically increased with increasing soil salinity levels. Forage qualities such as total digestible nutrients and relative feed value of silage barley were significantly higher with N application at 0.04% salinity level, but there was no effect of rice straw application. Soil organic matter content was increased with N and rice straw application regardless of soil salinity level. The results of this study showed that the effect of rice straw and N fertilization on silage barley was influenced by soil salinity levels, which indicates that the management practice of silage barley at Saemangeum reclaimed tidal land should consider soil salinity levels.

Characteristics of the soil loss and soil salinity of upland soil in saemangeum reclaimed land in western South Korea

  • Kim, Young Joo;Lee, Su Hwan;Ryu, Jin Hee;Oh, Yang Yeol;Lee, Jeong Tae
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.316-316
    • /
    • 2017
  • The objective of this study is to estimate quantitatively soil salinity and soil loss at upland soils in agriculture land region in Saemangeum reclaimed land on the south Korea coasts. Soil loss and soil salinity are the most critical problem at reclaimed tidal saline soil in Korea. The several thematic maps of research area such as land cover map, topographic and soil maps, together with tabular precipitation data used for soil erosion and soil salinity calculation. Meteorological data were measured directly as air temperature, wind speed, solar radiation, and precipitation. The experiment was conducted 2% sloped lysimeter ($5.0m{\times}20.0m$) with 14 treatments and it were separated by low salinity division (LSD) and high salinity division (HSD) install. The cation content in ground water increased during time course, but in the case of land surface water the content was variable, and $K^+$ was lower than that of $Na^+$ and $Mg^{2+}$. At the LSD under rainproof condition, the salinity was directly proportional to soil water content, but at the HSD the tendency was no reversed. In condition of rainproof, the amount of soil salinity was higher at the HSD than at the LSD. Positive correlation was obtained between the soil water content and available phosphorous content at the rainfall division, but there was no significance at the surface soil of the rainproof division. Sodium adsorption ratio and anion contents in soil were repressed in the order of vinyl-mulching > non-mulching > bare field. According to the result of analyzing soil loss, soil loss occurred in a vinyl-mulching, a non-mulching and a bare field in size order, and also approximately 11.2 ton/ha soil loss happened on the reclaimed land area. The average soil loss amount by the unit area takes place in a non-mulching and bare field a lot. Our results indicate that soluble salt control and soil erosion are critical at reclaimed tidal saline soil and the results can provide some useful information for deciding management plans to reduce soil loss and salt damage for stable crop production and diverse utilization or cultivation could be one of the management options to alleviate salt damage at reclaimed tidal saline soil in Korea.

  • PDF

해안간척지토양의 생물학적 토성개량에 관한 연구 5 (Biological improvement of reclaimed tidal land soil (V))

  • 홍순우;하영칠;이광웅
    • 미생물학회지
    • /
    • 제8권1호
    • /
    • pp.13-20
    • /
    • 1970
  • Chenges in respiration of the soils collected from the reclaimed tidal soil in Chogi-ri, Kanghwa Island and treated with organic matters are presented. The measurement of the respiration for the smaples, which were incubated for 0,2,4 and 5 weeks, were carried out by using Warburg's respirometer. While the respirations of the samples added by organic matters were increased 6.7 - 28.0 times compared with that 0 week during the incubation in case of 5-year soil, the respiration in case of 3-year soil were increased 3.3-11.8 times. Thus, the effect of adding organic matters on the respiration of the experimented soils, as this indicates, was much higher for the soil of 5-year area than that of 30-year area. And for the organic matters Salicornia was most effective and then Suaeda and Oryzae. The samples treated with Salicornia and Suaeda showed their highest respiration rate at the 4th week, but the one with Oryzae was measured to increase progressively during 5 weeks experimented. Regarding the salinity, content of organic matters and number of bacteria, in each intact soil experimented, 5-year soil samples had much poor habitat then 30-year soil for the activity of soil microorganisms, but according to the result mentioned above, it is firmly believed that the addition of organic matters on the saline soil is one of the best means to change the reclaimed tidal land into arable land with less time duration.

  • PDF

Effect of Subsurface Drainage Systems on Soil Salinity at Saemangeum Reclaimed Tidal Land

  • Lee, Sanghun;Bae, Hui-Su;Lee, Soo-Hwan;Oh, Yang-Yeol;Ryu, Jin-Hee;Ko, Jong-Cheol;Hong, Ha-Chul;Kim, Yong-Doo;Kim, Sun-Lim
    • 한국토양비료학회지
    • /
    • 제48권6호
    • /
    • pp.618-627
    • /
    • 2015
  • Soil salinity is the most critical factor for crop production at reclaimed tidal saline soil. Subsurface drainage system is recognized as a powerful tool for the process of desalinization in saline soil. The objective of this study was to investigate the effects of subsurface drainage systems on soil salinity and corn development at Saemangeum reclaimed tidal saline soil. The field experiments were carried out between 2012 and 2014 at Saemangeum reclaimed tidal land, Buan, Korea. Subsurface drainage was installed with four treatments: 1) drain spacing of 5 m, 2) drain spacing 10 m, 3) double layer with drain spacing 5 m and 10 m, and 4) the control without any treatment. The levels of water table showed shorter periods above 60 cm levels with the deeper installation of subsurface drainage system. Water soluble cations were significantly greater than exchangeable forms and soluble Na contents, especially in surface layer, were greatly reduced with the installation of subsurface drainage system. Subsurface drainage system improved biomass yield of corn and withering rate. Thus, the biomass yield of corn was improved and the shoot growth was more affected by salinity than was the root growth. The efficiency of double layer was not significant compared with the drain spacing of 5 m. The economic return to growers at reclaimed tidal saline soil was the greatest by the subsurface drainage system with 5 m drain spacing. Our results demonstrated that the installation of subsurface drainage system with drain space of 5 m spacing would be a best management practice to control soil salinity and corn development at Saemangeum reclaimed tidal saline soil.

간척지 흙의 암거 설치조건에 따른 제염 특성의 이론적 해석 (Theoretical Analysis of Soil Desalination Characteristics for Underdrain System at Reclaimed Tidal Land)

  • 김현태;서동욱;류찬호;김석열
    • 한국농공학회논문집
    • /
    • 제57권3호
    • /
    • pp.87-92
    • /
    • 2015
  • Cultivation on reclaimed tidal land is often difficult in the problem such as high salinity of soil, bad drainage because of high level of groundwater. Many researches have been made efforts to solve these problems, but effect of improvement is low and practicality is insufficient. In this study, through numerical analysis of the transport properties of salt and water, we suggested underground drainage of the reclaimed land and the desalination promotion methods in the soil. The results of characteristic of desalination and seepage analysis of underdrain show that underdrain is able to increase twice of the underground seepage amount when installing perforated pipe with horizontal filter (width 50cm) more than installing only the perforated pipe. For soil which coefficient of permeability is below $1{\times}10^{-4}cm/s$ that desalination with pond water is not possible, a method to increase the permeability of the soil is necessary. Therefore, it was concluded that application of underdrain using perforated pipe with horizontal filter would be low-cost and practical.

석문 간척지에서 돈분액비 및 석고처리가 여름철 사료작물 수량 및 토양이화학성에 미치는 영향 (Effects of Soil Amendment Application on Soil Physico-chemical Properties and Yields of Summer Forage Crops in the Sukmoon Reclaimed Tidal Land in Korea)

  • 최기춘;윤세형;신재순;김동관;한효심;수판자니;이경동
    • 한국환경농학회지
    • /
    • 제29권4호
    • /
    • pp.354-361
    • /
    • 2010
  • Soil physico-chemical properties and microbial densities are affected by organic sources and soil amendment applied to improve soil environments or quality. Generally organic fertilizer effects on forage crops yield and soil properties are partly due to changes of soil composition. We investigated the effects of swine slurry (SS), swine slurry composting-biofilteration(SCB) and chemical fertilizer(F) with gypsum(G) combinations on soil physico-chemical properties and yields of summer forage crop in the Sukmoon reclaimed tidal land in Korea. The forage crops used in this experiment were corn and sorghum$\times$sudangrass hybrid(hereafter sorghum). Our results showed that the soil physico-chemical properties in the combined (F+G, SS+G, SCB+G) treatments increased contents of organic matter and exchangeable $Ca^{2+}$, but exchangeable $Na^+$, $K^+$ and $Mg^{2+}$ reduced to 1-10% for two forage crops, compared to non-combined (F, SS, SCB) treatment. The density of soil microorganism such as bacteria, actinomycetes and fungi, increased significantly by SS+G and SCB+G treatments. This means that treatment of combined organic fertilizer with G lowered salinity levels and improved with microbial growth. The combined treatments also increased the total yields 2.3-6.2% for corn and 2.0-8.7% for sorghum, compared with non-combined treatment. This experiment suggests the combined treatments could increase the total yields of summer forage crops and change of soil physico-chemical properties in the Sukmoon reclaimed tidal land in Korea.

자연강우에 의한 간척지토양의 이화학적 특성변화 (Changes of physico-chemical properties in the reclaimed tidal land soils by precipitation)

  • 김재영;손재권;구자웅;최진규
    • 농촌계획
    • /
    • 제8권1호
    • /
    • pp.3-14
    • /
    • 2002
  • Changes of chemical properties by times of the reclaimed tidal land soils and soil surface water, underground infiltration water with precipitation-runoff on natural meteological condition in the unripened tidal reclaimed paddy fields were investigated. This study was carried out to use environment-friendly farm land in the reclaimed tidal lands. The soils used in this study were saline-alkaline soils with the high $Na^+$ and $Mg^{++}$ content. As the results of investigation outflow loading of nutriments through outflow water in the unripened tidal reclaimed paddy fields by precipitation during the survey period, nutriments equivalent to T-N $1{\sim}2\;kg\;10a^{ -1}$ and T-P $0.01{\sim}0.02\;kg\;10a^{-1}$ from in the unripened tidal lands were discharged. Besides, the results of comparison losses of cation through outflow water showed $Na^+>\;K^+>\;Mg^{++}\;>\;Ca^{++}$, and the highest appeared water discharge of $Na^+$. In case of saemangeum reclaimed tidal land soils water discharge of cations showed $Ca^{++}$ 1.3 kg $10a^{-1}$, $Mg^{++}$ 1.6 kg $10a^{-1}$, $Na^+$ 17.7 kg $10a^{-1}$, and $K^+$ 3.2 kg $10a^{-1}$ respectively. On the other hand, in case of koheung reclaimed tidal lands soils water discharge of cations showed $Ca^{++}$ 18.1 kg $10a^{-1}$, $Mg^{++}$ 31.2 kg $10a^{-1}$, $Na^+$ 320.8 kg $10a^{-1}$ and $K^+$ 51.2 kg $10a^{-1}$ respectively.