• Title/Summary/Keyword: reclaimed

Search Result 1,229, Processing Time 0.025 seconds

Analysis of Plant Height, Crop Cover, and Biomass of Forage Maize Grown on Reclaimed Land Using Unmanned Aerial Vehicle Technology

  • Dongho, Lee;Seunghwan, Go;Jonghwa, Park
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.1
    • /
    • pp.47-63
    • /
    • 2023
  • Unmanned aerial vehicle (UAV) and sensor technologies are rapidly developing and being usefully utilized for spatial information-based agricultural management and smart agriculture. Until now, there have been many difficulties in obtaining production information in a timely manner for large-scale agriculture on reclaimed land. However, smart agriculture that utilizes sensors, information technology, and UAV technology and can efficiently manage a large amount of farmland with a small number of people is expected to become more common in the near future. In this study, we evaluated the productivity of forage maize grown on reclaimed land using UAV and sensor-based technologies. This study compared the plant height, vegetation cover ratio, fresh biomass, and dry biomass of maize grown on general farmland and reclaimed land in South Korea. A biomass model was constructed based on plant height, cover ratio, and volume-based biomass using UAV-based images and Farm-Map, and related estimates were obtained. The fresh biomass was estimated with a very precise model (R2 =0.97, root mean square error [RMSE]=3.18 t/ha, normalized RMSE [nRMSE]=8.08%). The estimated dry biomass had a coefficient of determination of 0.86, an RMSE of 1.51 t/ha, and an nRMSE of 12.61%. The average plant height distribution for each field lot was about 0.91 m for reclaimed land and about 1.89 m for general farmland, which was analyzed to be a difference of about 48%. The average proportion of the maize fraction in each field lot was approximately 65% in reclaimed land and 94% in general farmland, showing a difference of about 29%. The average fresh biomass of each reclaimed land field lot was 10 t/ha, which was about 36% lower than that of general farmland (28.1 t/ha). The average dry biomass in each field lot was about 4.22 t/ha in reclaimed land and about 8 t/ha in general farmland, with the reclaimed land having approximately 53% of the dry biomass of the general farmland. Based on these results, UAV and sensor-based images confirmed that it is possible to accurately analyze agricultural information and crop growth conditions in a large area. It is expected that the technology and methods used in this study will be useful for implementing field-smart agriculture in large reclaimed areas.

Physicochemical Properties of Depth-based Soil on the Reclaimed Dredging Area (임해준설매립지 토양의 깊이별 이화학적 특성)

  • Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Deok-Beom;Lee, Sang-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.60-71
    • /
    • 2008
  • Through analyzing the specific physicochemical alterations in depth-based soil at reclaimed dredging area, the baseline data were provided for developing the reclaimed dredging area as natural landscape planting sites and ecological-landscape sites based on the soil improvement technology. There was no physical disturbance for 15 to 20 years in Gwangyang Bay reclaimed dredging area after reclamation. Physicochemical examinations of the soil were performed based on the vertical depth. Results of physicochemical analysis such as pH, electric conductivity, total salt contents, silt, clay contents, available phosphorus, calcium, magnesium, sodium, chlorine, and sodium-adsorption ratio showed increasing patterns with the depth while total organic contents, total nitrogen, and sand showed decreasing patterns. Potassium as an exchangeable cation, showed similar distribution patterns between the shallow and deep soil. This result strongly implied that long-term exposure to natural rainfall in reclaimed dredging area altered soil characteristics related to salinity. This research demonstrated that there were no remarkable differences in physicochemical characteristics at soil depth and groundwater table height, suggesting a baseline data for developing reclaimed dredging area. Additional investigation is required for different reclaimed dredging areas. Also, additional monitoring and examination are need on plant communities and time variable alteration in the soil to test the feasibility of reclaimed dredging areas as natural landscape planting sites and ecological-landscape sites.

The Engineering and Environmental Properties of Reclaimed Concrete Materials as Road Materials (도로건설재료로 순환골재의 공학적·환경적 특성에 관한 기초연구)

  • Lee, Yong-Soo;Kwan, Yong-Wan;Hyun, Jae-Hyuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.6 no.3
    • /
    • pp.17-23
    • /
    • 2005
  • In Korea, the production of reclaimed concrete materials has been increased due to the increase in the concrete structures taken down every year. The reclaimed concrete materials have been reused as road materials. However, the studies on their mechanical and environmental properties have been very limited. The recycled rate of the materials is currently low in Korea. This paper presents the investigation of mechanical and environmental properties of the reclaimed concrete materials, as well as the comparisons with those of gravel. For the evaluation of the mechanical and environmental characteristics, following tests were conducted on both reclamed materials and gravel; liquid limit, plasticity index, CBR, sand equivalent test, abrasion test, pH test, and column leaching test. The test results showed that the reclaimed concretes satisfy the requirements for use as roadbase, subbase, and subgrade materials, except base materials. The pH of reclaimed concrete materials was less than 11 and the leaching test results satisfied the regulatory requirement of Waste Management Act in Korea. Based on the investigations, it appears that the reclaimed concrete materials are environmentally safe and applicable for use as road materials.

  • PDF

Analysis of Heating Load Characteristics for Greenhouses Constructed in Reclaimed Lands (간척지 설치 온실의 난방부하 특성 분석)

  • Nam, Sang Woon;Shin, Hyun Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.6
    • /
    • pp.1-8
    • /
    • 2017
  • The purpose of this study was to provide basic data for development of environmental design technology for greenhouses constructed in reclaimed lands. We analyzed the climatic conditions around seven major reclaimed land areas in Korea, which have a plan to install advanced horticultural complexes. The characteristics of heating load through the thermal environment measurement of the greenhouse in Saemangeum were analyzed. The part to be applied to the environmental design of the greenhouses in reclaimed lands were reviewed. The overall heat transfer coefficient of the experimental greenhouse with the aluminum screen and multi-layer thermal curtain averaged $3.79W/m^2^{\circ}C$. It represents a 44 % heat savings rate compared with plastic greenhouses with a single covering, which was significantly lower than that of the common greenhouses with 2-layer thermal curtains. This is because the experimental greenhouse was installed on reclaimed land and wind was stronger than the inland area. Among the total heating load, the transmission heat loss accounted for 96.4~99.9 %, and the infiltration loss and the ground heat exchange were low. Therefore, it is necessary to take countermeasures to minimize the transmission heat loss for greenhouses constructed in reclaimed lands. As the reclaimed land is located on the seaside, the wind is stronger than the inland area, and the fog is frequent. Especially, Saemangeum area has 2.6 times stronger wind speed and 3.4 times longer fog duration than the inland area. In designing the heating systems for greenhouses in reclaimed lands, it is considered that the maximum heating load should be calculated by applying the wind coefficient larger than the inland area. It is reasonable to estimate the operation cost of the heating system by applying the adjustment factor 10 % larger than the average in calculating the seasonal heating load.

Spatio-Temporal Variations of Paddy and Water Salinity of Gunnae Reclaimed Tidelands in Western Coastal Area of Korea (서해안 군내간척지 담수호 및 농경지 염류의 시공간적 분포 특성 분석)

  • Beom, Jina;Jeung, Minhyuk;Park, Hyun-Jin;Choi, Woo-Jung;Kim, YeongJoo;Yoon, Kwang Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.1
    • /
    • pp.73-81
    • /
    • 2023
  • To understand salinity status of fresh water and paddy soils and the susceptibility of rice to salinity stress of Gunnae reclaimed tidelands, salinity monitoring was conducted in rainy and dry seasons. For fresh water, a high salinity was observed at the sampling location near the sluice gate and decreased with distance from the gate. This spatial pattern of fresh water salinity indicates the necessity of spatial distribution of salinity in the assessment of salinity status of fresh water. Interestingly, there was significant correlation between rainfall amount and salinity, implying that salinity of fresh water varies with rainfall and thus it may be possible to predict salinity of water using rainfall. Soil salinity also higher near the gate, reflecting the influence of high saline water. In addition, the groundwater salinity also high to threat rice growth. Though soil salinity status indicated low possibility of sodium injury, there was changes in soil salinity status during the course of rice growth, suggesting that more intensive monitoring of soil salinity may be necessary for soil salinity assessment. Our study suggests the necessity of intensive salinity monitoring to understand the spatio-temporal variations of salinity of water and soil of reclaimed tideland areas.

Screening for Fittest Miscellaneous Cereals for Reclaimed Land and Functionality Improvement of Sorghum bicolor Cultivated in Reclaimed Land (간척지 적응성 잡곡 선발 및 간척지 재배 수수의 기능성 향상 효과)

  • Kang, Chan Ho;Lee, In Sok;Kwon, Suk Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.2
    • /
    • pp.109-126
    • /
    • 2019
  • Genetic resources of 84 species of Setaria italica BEAUVOIS, Sorghum bicolor, and Panicum miliaceum were collected to select the adaptable miscellaneous cereals in Saemangeum reclaimed land. The adaptability of Sorghum bicolor in reclaimed land was the highest among the three cereals cultivated on reclaimed land. The ratio of the average height of Sorghum bicolor plants cultivated in reclaimed land/normal field was 0.82, that of Panicum miliaceum was 0.61, and that of Setaria italica BEAUVOIS was 0.51. Three species of Sorghum bicolor, Satangdajuk, Kkamansusu, and Nampungcharl, were selected as potential genetic resources as they had excellent adaptability to reclaimed land. The yield of Satandaejuk on reclaimed land was 229.4 kg/10a, and the yield ratio of reclaimed land/normal field was 89.3%. The yield of Kkamansusu was 227.4 kg/10a, with reclaimed land/normal field ratio of 87.8%, and yield of Nampungcharl was 239.6 kg/10a, and reclaimed land/normal field ratio of 86%. In order to study the salt tolerance of selected genetic resources, we conducted salinity test. Salinity tolerance of Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl was excellent compared to that of the other cereals. Among these, Satandaejuk had to highest salt tolerance level. Polyphenols, flavonoids, and detoxification of free radical were also studied. The anti-diabetic property of the cereals was also analyzed by ${\alpha}$-glucosidase inhibitory activity. We confirmed that the functionality of 3 lines in reclaimed land had improved in all the functional analysis categories when compared to that with yield in the normal field. Polyphenol, an antioxidant, increased in the range of 2~26% when cultivated in reclaimed land and the flavonoid content also increased from 8.5 to 55.6%. DPPH elimination capability, the ability to scavenge harmful reactive oxygen, also increased from 16.7 to 47% when cultivated in reclaimed land. The anti-diabetic activity and ${\alpha}$-glucosidase inhibition activity of selected Sorghum bicolor species-Satangdajuk, Kkamansusu, Nampungcharl also increased from 18.4 to 19.9% when cultivated on reclaimed land.

Survey for Reclaimed Lands in Western Coast of North Korea using Satellite Image data (인공위성 영상 자료를 이용한 북한 지역의 간척지 조사)

  • 신석효;김상철;안기원;김남식
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.251-257
    • /
    • 2004
  • The Electro-Optical Camera(EOC) image of the first Korea Multi-Purpose Satellitel(KOMPSAT-1) has both high resolution and convenient acquisition of research data, but on the other hand it has a defect of one band image. Fortunately, the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data are receiving every day at the Korea Aerospace Research Institute (KARI). Therefore, this paper performed an effective merging for survey of reclaimed land using the high-resolution (6.6m) KOMPSAT-1 EOC image and the multispectral MODIS image data. According this paper prepared map of reclaimed lands in Western Coast of North Korea as quantitative(position and form) survey of reclaimed lands of North Korea using merged image. The use of KOPSAT-1 EOC image and MODIS images was found to be economical such using of large scale areas as reclaimed land or according easy to collect information and such north korea as inaccessible areas like as receiving every day.

  • PDF

Effects of Compost and Gypsum on Soil Water Movement and Retention of a Reclaimed Tidal Land

  • Lee, Jeong-Eun;Yun, Seok-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.340-344
    • /
    • 2014
  • Compost and gypsum can be used to ameliorate soil physicochemical properties in reclaimed tidal lands as an organic and inorganic amendment, respectively. To evaluate effects of compost and gypsum on soil water movement and retention as a soil physical property, we measured the soil's saturated hydraulic conductivity and field capacity after treating the soil collected in a reclaimed tidal land with compost and gypsum. Saturated hydraulic conductivity of soil increased when compost was applied at the conventional application rate of $30Mg\;ha^{-1}$. However, the further application of compost insignificantly (P > 0.05) increased saturated hydraulic conductivity. On the other hand, additional gypsum application significantly increased soil saturated hydraulic conductivity while it decreased soil field capacity, implying the possible effect of gypsum on flocculating soil colloidal particles. The results in this study suggested that compost and gypsum can be used to improve hydrological properties of reclaimed tidal lands through increasing soil water retention and movement, respectively.

Correlation Analysis between Physical Properties and Compression Index for Dredged and Reclaimed Marine Clay in the Southern Coast of Korea (남해안 매립 해성점토의 물리적 특성과 압축지수의 상관성 분석)

  • Lim, Seok-Hun;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.53-59
    • /
    • 2014
  • The single regression method was used to analyze the correlationship between the compression index with mechanical properties for reclaimed marine clays in the southern coast of Korea. As results of performing regression analysis for 200 samples about reclaimed marine clays in the southern coast of Korea, linear regression lines between compression index and natural water content, void ratio in situ, and liquid limit respectively wer obtained. The changed properties of soil due to disturbance during dredging and reclaiming could be investigated by comparing with the existing empirical correlation equations for the original ground where dredging was performed. These regression equations might be rationally used in the preliminary evaluation of settlement of dredged and reclaimed marine clayey ground in the southern coast of Korea.

  • PDF

Correlation Analysis of Soil Parameters of Dredged and Reclaimed Marine Clay in Gyeonggi Coast (경기해안 준설매립 해성점토의 토질정수 상관성 분석)

  • An, Soo-Yeong;Yoo, Nam-Jae
    • Journal of Industrial Technology
    • /
    • v.35
    • /
    • pp.81-88
    • /
    • 2015
  • The single regression method was used to analyze the correlationship between the compression index with mechanical properties for reclaimed marine clays in the Gyeonggi coast of Korea. As results of performing regression analysis for 62 samples about reclaimed marine clays in the Gyeonggi coast of Korea, linear regression lines between compression index and natural water content, void ratio in situ, and liquid limit respectively were obtained. The changed properties of reclaimed soil due to disturbance during dredging and reclaiming could be investigated by comparing with the existing empirical correlation equations for the original ground where dredging was performed.

  • PDF