• 제목/요약/키워드: recirculation flow

검색결과 654건 처리시간 0.026초

Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화 (Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor)

  • 손민기;성호진;이제근
    • 한국연소학회지
    • /
    • 제18권3호
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

터널 입출구 주위의 유동장과 배기가스 재순환 (Flow Field and Exhaust Gas Recrirculation around a Tunnel Entrance and Exit)

  • 서용권;이창우;최윤환
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.245-249
    • /
    • 1996
  • In this study, the flow field and the recirculation phenomena are investigated numerically for the model around a tunnel entrance and exit. It turns out that the air entering to the tunnel entrance comes mostly from the upper region of the entrance implying that maintaining the air clear in that region is important for the inside-tunnel ventilation. We also found that the recirculation of the exhaust gas from the exit to the entrance has a maximum effect when the flow velocity at the exit is somewhat lower than that of the entrance.

  • PDF

화재화염이 유동 및 $CO_2$소화제 전달특성에 미치는 영향 (The Effect of Fire Plume on the Characteristics of Air Flow and $CO_2$Extinguishant Transfer)

  • 박찬수;최주석
    • 한국화재소방학회논문지
    • /
    • 제16권4호
    • /
    • pp.33-43
    • /
    • 2002
  • 선박기관실과 유사한 공간내로 $CO_2$소화제를 분사했을 때 화재화염이 공기유동 및 $CO_2$소화제전달 특성에 미치는 영향을 분석하기 위하여 수치해석을 수행하였다. 노즐 위치에 따라 유동장과 $CO_2$농도장을 계산하였다. 한 경우를 제외한 모든 경우에서 시계방향과 반시계방향 재순환 유동이 노즐 좌, 우측영역에 형성되었으며, 이러한 재순환 유동이 질량전달과 $CO_2$소화제 확산경로에 큰 영향을 미치는 것을 알 수 있었다. 화재화염이 위치한 1층 영역에서는 $CO_2$소화제 확산경로가 재순환 유동 확장경로와 일치하였다.

높이차가 존재하는 두 분류의 2상유동에 관한 연구 (Study on Two-Phase Flow generated by Two Jets with Height Difference)

  • 박상규;양희천;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.88-93
    • /
    • 2000
  • In this study, the mixing process of two-phase flow generated by two jets with height difference is analyzed. The primary jet is jetted on the condition of the state mixed pulverized solid particles with air. The height difference between the main jet and the secondary jet is changed into three kinds(0, 32.5, 47.5mm). The velocity vector field, concentration field and turbulent properties of solid particles are measured by using 3-Dimensional Particles Dynamics Analyzer. As the height difference of two jets through the two nozzles increases, the solid particle recirculation zone and the dense zone in the combustion chamber become large. The solid particle concentration at the center of the combustion chamber gets dense because the particle velocity remains slow due to the existence of the solid particle recirculation zone. The particle concentration in the combustion chamber can also be influenced by the hight difference of two jets.

  • PDF

PIV를 이용한 삼중 제트의 유동 특성에 관한 연구 (A Study on the Flow Characteristics of the Triple Jets Using Particle Image Velocimetry)

  • 이명재;윤순현;김동건;김문경
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.28-35
    • /
    • 2005
  • Experiments were conducted to show the characteristics of the flow on triple parallel plane impinging jets. Measurements of mean velocity components and turbulent intensities were carried out with a particle image velocimetry(PIV) to investigate the flow field generated by the air issued from three identical plane parallel nozzles and mixed with the ambient air. The measurements range of these experiments were Reynolds number of 5000 and 1000 based on the nozzle width and the case of nozzle-to-plate distances were two times, six times and ten times the width of the nozzle. Results show that recirculation region of Re=5000 is the stronger than that of Re=1000. Therefore, velocity loss of centerline for Re=5000 that shows strongly recirculation region takes effect greatly.

  • PDF

Flow Characteristics of Liquid Ramjet Engines using Two Color PIV

  • Ahn Kyubok;Yoon Youngbin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2001년도 Proceedings of 2001 Korea-Japan Joint Seminar on Particle Image Velocimetry
    • /
    • pp.151-163
    • /
    • 2001
  • A two color PIV technique has been developed for visualization of complex and high speed flow in a ramjet combustor. Two color PIV has the advantages that velocity distributions in high speed flowfields can be measured simply by varying the time interval between two different laser beams and a directional ambiguity problem can be solved by color separation, and then a signal-to-noise ratio can be increased through nearly perfect cross-correlation. As a basic research of the ramjet engine, a 2-D shaped combustor with two symmetric air intakes has been manufactured and an experimental study has been conducted using a two color PIV technique. The flow characteristics such as recirculation zones, intake air mixing and turbulent kinetic energy have been investigated varying inlet angles and dome heights. It was found that the primary recirculation zone is affected mainly by the dome height, whereas the secondary recirculation zone is influenced by the air inlet angle.

  • PDF

유동해석에 의한 연료전지용 수소 재순환 블로워 개발 (Development of Hydrogen Recirculation Blower for Fuel Cell Vehicle by Flow Analysis)

  • 심창열;홍창욱;김영수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.684-689
    • /
    • 2005
  • Parametric calculation were conducted to estimate performance of variable geometry of hydrogen recirculation blower for fuel cell vehicle. The pressure rise and efficiency are effected by change of the geometric parameter of impeller and casing, and stripper clearance under various mass flow. Hydrodynamic performance were evaluated, and also the inner flow fields were investigated by CFD. Calculated results show good coincidence with experimental test results of total pressure performance. Performance of model designed by parametric calculations satisfied experimental data of verification model.

  • PDF

협착 동맥에서의 맥동 혈류 유동에 대한 수치해석적 연구 (Numerical Study of Pulsatile Blood Flow in Stenotic Artery)

  • 서태원
    • 대한기계학회논문집B
    • /
    • 제32권11호
    • /
    • pp.891-896
    • /
    • 2008
  • In the present computational study, simple stenotic artery models using pulsatile flow condition were investigated. A 1 Hz non-reversing sinusoidal velocity for pulsatile flow was imposed at the flow inlet and the corresponding Womersley number based on the vessel radius is 2.75. The simple stenotic geometries have been used that consist of 25%, 50% and 75% semicircular constriction in a cylindrical tube. In this paper, numerical solutions are presented for a first harmonic oscillatory flow using commercial software ADINA 8.4. As stenosis and Reynolds number increase, the maximum wall shear stress(WSS) increases while the minimum WSS decreases. As the stenotic rate increases, the pressure drop at the throat severely decreases to collapse the artery and plaque. It is found that the fluid mechanical disturbances due to the constriction were highly sensitive with rate of stenosis and Reynolds number. When Reynolds number and stenosis increase, the larger recirculation region exists. In this recirculation region the possibility of plaque attachment is increasingly higher. The present results enhance our understanding of the hemodynamics of a stenotic artery.

확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 (1) (Structure and Characteristics of Diffusion Flame behind a Bluff-Body in a Divergent Flow(I))

  • 최병륜;이중성
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1269-1279
    • /
    • 1995
  • An experimental study is carried out on turbulent diffusion flames stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. Flame stability limits, as well as size and temperrature of recirculation zone, are measured by direct and schlieren photographs to clarify the characteristics and structure of diffusion flames and to assess the effect of various divergent angle of duct. The results of the present study are as follows. Temperature in the recirculation zone decreases with increasing divergent angle. The blow-off velocity in parallel duct is higher than that in divergent duct. Critical blow-off velocity is expected to be about 8-12 degree through blow-off velocity pattern. Regardless of divergent angles, the length of recirculation zone is nearly constant, and this length becomes longer with rod diameter. Pressure gradient has an effect on the eddy structure in shear layer behind the rod. With the increase of divergent angle, large scale eddies by dissipated energy in shear layer are split into small scale eddies, and the flame becomes a typical distributedreacting flame.

협착된 관상동맥과 복부 대동맥의 유동 특성 비교 (Flow comparison between Stenosed Coronary and Abdominal Arteries)

  • 김민철;이종선;김찬중
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.585-590
    • /
    • 2001
  • The hemodynamic characteristics were compared using commercial CFD code for the stenosed coronary and abdominal arteries. Numerical calculations were carried out in the axisymmetric arteries over the stenotic diameter ratios ranging from 0.25 to 0.875 (6 cases) employing the typical physiological flow conditions. In case of the coronary artery, there was only one recirculation zone observed distal to the stenosis throat during the major portion of the period. However, in case of the abdominal aorta, there were complex recirculation regions found proximal and distal to stenosis throat. For both models, the wall shear stresses(WSS) increased sharply in the converging stenosis, reaching a peak just upstream of the throat, and became negative or low values in the post-stenotic recirculation region. As the results, the oscillatory shear index(OSI) was abruptly increased at the stenosis throat. For the coronary stenosis model, the second peak in the OSI was observed distal to the stenosis. The distance between the first peak and the second peak was increased as the degree of the stenosis was raised. On the orther hand, the abdominal stenosis model showed a complex oscillatory behavior in the OSI index and did not showed such a strong second peak. As the degree of stenosis was increased, recirculation regions of the both arteries were extended much longer and flow pattern became more complex.

  • PDF