• Title/Summary/Keyword: recirculation area

Search Result 131, Processing Time 0.022 seconds

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Effect of Leachate Recirculation LFG Generation Characteristics (침출수 재순환에 따른 매립가스 변화특성 연구)

  • Won, Seung-hyun;Park, Dae-won
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.2
    • /
    • pp.19-32
    • /
    • 2018
  • This study has been carried out to analyze the effects of leachate recirculation on methane gas concentration in the Landfill. The monthly average on precipitation of the landfill area during the period from 2010 to 2016 has been recorded at 130.9 mm and the total precipitation was recorded at 73.7 mm for the month of June in 2017. And based on the Korea meterological administration data obtained, the water content has been anticipated to be at low level. And for the control environment testing on the effects of leachate recirculation, the reading has been carried out in relation to the methane gas concentration with the landfill site tested with average reading of 30.14%. Once the reading has been established 5 tones of leachate has been injected and the readings carried out respectively with the first reading recorded at 24.66% on June with subsequent readings carried out, 31.51 (6/24), 36.88% (7/1) and final reading carried out on 7/25 registered at 52.47%. Based on the leachate recirculation, the test showed increase of methanate concentrations with the concentration percentage showing between 50~65%.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 성능 해석)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Numerical Analysis for the Pressure and Flow Fields past a Two-Staged Conical Orifice (이단 원추형 오리피스를 지나는 압력장과 유동장에 관한 수치적 연구)

  • Kim, Yeon-Su;Kim, Yu-Gon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.278-287
    • /
    • 2002
  • The objective of the paper was to calculate the pressure drop and to investigate the recirculation region of the conical orifices used in Kwang-yang Iron & Steel Company. The flow field with water used as a working fluid was the turbulent flow for Reynolds number of 2$\times$10$^4$. The effective parameters fur the pressure drop and the recirculation region were the conical orifice\`s inclined angle ($\theta$) against the wall, the interval(S) between orifices, the relative angle of rotation($\alpha$) of the orifices, the shape of the orifice's hole(circle, rectangle, triangle) having the same area, the number(N) of the orifice's holes having the same mass flow rate, and the thickness(t) of the orifices. It was fecund that the shape of the orifice's hole, the number of the orifice's holes and the thickness of the orifice affected the total pressure drop a lot and that the conical orifice's inclined angle against the wall, the relative angle of rotation of the orifices, the number of the orifice's holes and the thickness of the orifices affected the center location of the recirculation region. The PISO algorithm with FLUENT code was employed to analyze the flow field.

An Experimental Study on Flow Characteristics for Optimal Spacing Suggestion of 45° Upward Groynes (45° 상향수제의 적정 간격 제시를 위한 흐름특성 실험 연구)

  • Kim, Sung Joong;Kang, Joon Gu;Yeo, Hong Koo
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.5
    • /
    • pp.459-468
    • /
    • 2014
  • Groyne to control the direction and velocity of flow in rivers is generally installed for the purpose of protecting riverbanks or embankments from erosion caused by running water. In particular, as interest in river restoration and natural river improvement increases, groynes are proposed as a key hydraulic structure for local flow control and riparian habitat establishment. Groynes are installed mainly in groups rather than as individual structures. In case of groynes installed as a group, flow around the groynes change according to spacing in between the groynes. Therefore, groyne spacing is regarded as the most important factor in groyne design. This study aimed at examining changes of flows around and within the area of groynes that take place according to the spacing of groynes installed in order to propose the optimal spacing for upward groynes. To examine flow characteristics around groynes, this study looked at flows in main flow area and recirculation flow area separately. In main flow area, it examined the impact of flow velocity increasing as a result of conveyance reduction that is exerted on river bed stability in relation to changes in the maximum flow velocity according to installation spacing. As a factor causing impacts on scouring and sedimentation within the area of groynes, recirculation flow in the groyne area can lead problems concerning flow within the area and stability of embankment. As for recirculation area, an analysis was conducted on the scale of rotational flow and the flow around embankment that exerts impacts on stability of the embankment. In addition, a comparative analysis was carried with reference to changes of the central point of rotational flow that occur within the area of groynes. As a result of compositely examining the results, the appropriate installation spacing is proposed as min. four times-max. six times considering a decrease in flow velocity according to the installation of upward groynes, river bed stability and stability of embankments against counterflow within the area of groynes.

Flame Stability and NOx Formation by Micro scale Turbulence (마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성)

  • Kim, I.S.;Seo, J.M.;Lee, G.S.;Lee, C.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF

Finite Element Analysis and Formability Evaluation for Dimple Forming with Thin Sheet Metal (박판 딤플 성형을 위한 유한요소해석 및 성형성 평가)

  • Heo, Seong-Chan;Seo, Young-Ho;Ku, Tae-Wan;Song, Woo-Jin;Kim, Jeong;Kang, Beom-Soo
    • Transactions of Materials Processing
    • /
    • v.16 no.8
    • /
    • pp.621-628
    • /
    • 2007
  • Nowadays, Exhaust Gas Recirculation(EGR) Cooler is one of the most favorite systems for reducing the generation amount of $NO_x$ and other particle materials from vehicles burning diesel as fuel. Efficiency of the system is mainly dependent on its heat transfer efficiency and this ability is affected by net heat transferring area of the system. For that reason, several types of heat transfer tube such as dimple, wrinkle and spiral types that have large net area are used. However, it is difficult to manufacture the rectangular tube with dimpled type structure because it experiences too much strain around the rectangular tube surface during the forming process. For that reason, in this study, numerical simulation for forming process of non-symmetric dimple shape on a thin sheet metal was carried out. Furthermore, theoretical forming limit curves(forming limit diagram, forming limit stress diagram) were proposed as criteria of formability evaluation. From the results of finite element simulation in view of stress and strain distribution, it is found that the designed process has robustness and feasibility to safely manufacture the dimpled rectangular tube.

A Study on the Cold Flow Characteristics of a Flue Gas Recirculation Burner with Both Outlets Opening (양쪽 출구가 트인 배기가스 재순환 버너의 냉간 유동 특성에 관한 연구)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.3
    • /
    • pp.7-12
    • /
    • 2018
  • Thermal NOx is generated in a high temperature environment in a combustion facilities. Exhaust gas recirculation method is widely used among various methods for reducing nitrogen oxides in combustion devices. In the present study, the computational fluid dynamic analysis was accomplished to elucidate the cold flow characteristics in the flue gas recirculation burner with both outlets opening. Because the reciculation pipes is installed toward the tangential direction, the swirling flow is formulated in the burner and the phenomenon of the reverse flow creation is detected at the center area of circular burner. We are confirmed that this is the similar trend with the burner with one side outlet closed. From the present study, it was seen that the recirculated inflow from both recirculated burner outlets increased by about 5% compared to the burner with one side outlet opening. At the outlet located at the exhaust gas recirculation pipe inlet(gas exit 1), the inlet flow was formed in the entire region. At the opposite outlet(gas exit 2), the total flow was discharged, but the center part of the burner was observed to have a reverse flow. The flow rate at the gas exit 2 was 3 ~ 5 times larger than the flow rate at the gas exit 1.