• 제목/요약/키워드: recirculating aquaculture system

검색결과 110건 처리시간 0.023초

Design and Performance of a Laboratory Scale Closed Seawater Recirculating System for Korean Rockfish Sebastes schlegeli Culture Part 1. Design of the Closed Seawater Recirculating System

  • Lei Peng;Oh, Sung-Yong;Jo, Jae-Yoon
    • 한국양식학회:학술대회논문집
    • /
    • 한국양식학회 2003년도 추계학술발표대회 논문요약집
    • /
    • pp.125-125
    • /
    • 2003
  • Recirculating aquaculture systems consist of different treatment compartments that maintain water quality within the ranges of commonly recommended for fish culture. This paper presents the common considerations in designing different treatment compartments as well as the engineering criteria in designing closed recirculating aquaculture system including a circular tank for fish culture, a sedimentation basin and a foam fractionator for solids removal, two styrofoam bead filters for TAN removal, a sand filter for nitrate removal, and aerators. The main purpose is to outline a common procedure in designing of closed recirculating aquaculture system for marine fish culture.

  • PDF

순환여과 양식장에서 와류형 분리기에 대한 수치적 검토 (Numerical Analysis of A Vortex Cyclone in A Recirculating Aquaculture System)

  • 정석권;김은필
    • 동력기계공학회지
    • /
    • 제9권1호
    • /
    • pp.36-41
    • /
    • 2005
  • This study investigated the performance of a vortex hydrocyclone for solid removal in a recirculating aquaculture system. In a fish-breeding industry, effluent water is mainly disposed by gravity sedimentation. Thus, a large settling tank and a lot of water are needed to purify effluent water. However, this typical method does not show consistent efficiency. In case of low efficiency, discharged water contains a lot of feeding sediments. This causes environmental problems. Instead of this typical method a hydrocylone is tested to discharge water which contains a lot of feeding sediments. In this paper, a hydrocyclone with low velocity and pressure drop in a recirculating aquaculture system is investigated.

  • PDF

Solids removal by foam fractionator in simulated seawater aquarium system

  • Lei Peng;Jo, Jae-yoon
    • 한국어업기술학회:학술대회논문집
    • /
    • 한국어업기술학회 2003년도 춘계 수산관련학회 공동학술대회발표요지집
    • /
    • pp.219-220
    • /
    • 2003
  • The success of recirculating system depends largely on the treatment efficiency of waste generated in the system. fine solids were suspected to be responsible for fish kill in a recirculating system. Clogging of biofilter may be induced by high solids concentration in recirculating systems. Also, the solids could generate more ammonia nitrogen and oxygen demand if not removed out of recirculating system as soon as possible (Weeks et al., 1992). (omitted)

  • PDF

유연성 섬유사 여과기를 이용한 순환여과식 양식장의 부유고형물 제거 (Removal of Suspended Solids Using a Flexible Fiber Filter in a Recirculating Aquaculture System)

  • 최광수
    • 한국수산과학회지
    • /
    • 제40권2호
    • /
    • pp.73-78
    • /
    • 2007
  • The suitability of a flexible fiber filter for removing suspended solid (SS) in a recirculating aquaculture system was evaluated. This study focused on variation in the performance with a change in filtering time, influent water quality, and filtering mode duration. The particle distribution diagram of the filter effluent showed that the number of particles bigger than $5-8{\mu}m$ decreased dramatically, and the removal efficiency exceeded 80%. Although the removal efficiencies of SS and chemical oxygen demand (COD) were dependent on the quality of the influent, the SS and COD concentrations of the effluent were not affected by the influent concentrations. This was despite the deterioration if water quality after feeding in the rearing tank. The performance of the filter was not affected by the filtering mode duration, feeding conditions, or filtering time. The SS concentration and turbidity of the recirculating-type rearing tank were 30% and 50% lower, respectively, than of the a non-recirculating-type rearing tank under the same operating conditions. The flexible fiber filter was applicable to a recirculating aquaculture system that uses plenty of seawater, based on its low filtering resistance $(2kg_f/cm^2)$, high flux $(330m^3/m^2/hr)$, and high fine particle removal efficiency (80%, $5-8{\mu}m$).

The Need of Biofilter for Ammonia Removal in Recirculating Aquaculture System

  • Harwanto, Dicky;Jo, Jae-Yoon
    • 한국해양바이오학회지
    • /
    • 제4권1호
    • /
    • pp.1-5
    • /
    • 2010
  • With the world's population increase, demands of fish production increased rapidly. Because of the demand increase, methods of aquaculture also become more intense. With the increasing intensity of aquaculture, more metabolites in the system are accumulated. The metabolites accumulated in the system turn to the causatives of water quality deterioration and become limiting factors for fish growth. Due to the toxicity of ammonia, ammonia removal is needed in aquaculture system. Biofilters, often referred as biological filter or nitrification filter are commonly used in recirculating aquaculture system to remove ammonia and convert it to nitrite, and then to nitrate.

  • PDF

소형 순환여과양식시스템에서 어린 해삼(Apostichopus japonicus) 사육 (A Laboratory-scale Recirculating Aquaculture System for Sea Cucumber Apostichopus japonicus)

  • 정우철;;최종국;한종철;최병대;강석중
    • 한국수산과학회지
    • /
    • 제49권3호
    • /
    • pp.343-350
    • /
    • 2016
  • The sea cucumber Apostichopus japonicus is a commercially valuable aquaculture species in Korea. Aquaculture species require specific nursery culture conditions to increase survival and growth rates. Sea cucumbers hibernate during the high temperatures of summer and during the low temperatures of winter, and suboptimal temperature conditions decrease sea cucumber growth and survival rates. The natural South Korean environment is very unfavorable for culturing sea cucumber; therefore, developing a recirculating aquaculture system (RAS) capable of breeding and growing sea cucumber year-round is necessary. The aim of this study was to investigate growth performance of juvenile sea cucumber in a RAS. Growth and survival rates of juvenile sea cucumber were high during our 24-week experiment. Sea cucumber survival rates were 87.8-93.3%, and specific growth rates were 0.4689-0.7846.

순환 여과식 양식 시스템의 설계 및 개발 (Design and Development of Integrated Recirculating Aquaculture System)

  • 서근학;김병진;전임기
    • 한국수산과학회지
    • /
    • 제34권1호
    • /
    • pp.70-76
    • /
    • 2001
  • 우리나라의 실정에 적합하고 실용적인 순환 여과식 양식 시스템을 개발하여 package 형태로 개발하기 위하여 $2.5 m^3$ 규모의double drain 형태의 사육조와 침강성 고형물질을 제거하기 위한 침전조, 부유성 고형물의 제거를 위한 floating bead filter, 용존고 형물을 제거하기 위한 포말 분리기와 암모니아성 질소를 제거하기 위한 회전 원판 반응기를 조합한 순환 여과식 양식 시스템을 설계하고 제작하였다. 본 시스템에 평균 어체중 392.8g의 나일 틸라피아 173마리를 수용하여 일간 보충수를 사육조 용적의 $10\%$를 사용하여 14일간 어류사육을 실시한 걸과 사육조의 수질을 보충수와 거의 동일한 수질로 유지할 수 있었으며 사료계수 1.4, 일간 성장률 0.64를 얻을 수 있었다.

  • PDF

순환여과식 양식장 해수 열원 히트펌프 시스템의 전력 소비량 예측을 위한 인공 신경망 모델 (Power consumption prediction model based on artificial neural networks for seawater source heat pump system in recirculating aquaculture system fish farm)

  • 정현석;류종혁;정석권
    • 수산해양기술연구
    • /
    • 제60권1호
    • /
    • pp.87-99
    • /
    • 2024
  • This study deals with the application of an artificial neural network (ANN) model to predict power consumption for utilizing seawater source heat pumps of recirculating aquaculture system. An integrated dynamic simulation model was constructed using the TRNSYS program to obtain input and output data for the ANN model to predict the power consumption of the recirculating aquaculture system with a heat pump system. Data obtained from the TRNSYS program were analyzed using linear regression, and converted into optimal data necessary for the ANN model through normalization. To optimize the ANN-based power consumption prediction model, the hyper parameters of ANN were determined using the Bayesian optimization. ANN simulation results showed that ANN models with optimized hyper parameters exhibited acceptably high predictive accuracy conforming to ASHRAE standards.

Recirculating Aquaculture System Design and Water Treatment Analysis based on CFD Simulation

  • Juhyoung Sung;Sungyoon Cho;Wongi Jeon;Yangseob Kim;Kiwon Kwon;Deuk-young Jeong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권11호
    • /
    • pp.3083-3098
    • /
    • 2023
  • As demands for efficient and echo-friendly production of marine products increase, smart aquaculture based on information and communication technology (ICT) has become a promising trend. The smart aquaculture is expected to control fundamental farm environment variables including water temperature and dissolved oxygen (DO) levels with less human intervention. A recirculating aquaculture system (RAS) is required for the smart aquaculture which utilizes a purification tank to reuse water drained from the water tank while blocking the external environment. Elaborate water treatment should be considered to properly operate RAS. However, analyzing the water treatment performance is a challenging issue because fish farm circumstance continuously changes and recursively affects water fluidity. To handle this issue, we introduce computational fluid dynamics (CFD) aided water treatment analysis including water fluidity and the solid particles removal efficiency. We adopt RAS parameters widely used in the real aquaculture field to better reflect the real situation. The simulation results provide several indicators for users to check performance metrics when planning to select appropriate RAS without actually using it which costs a lot to operate.

해수 순환여과양식시스템에서 분리된 Flavobacteriaceae 균주 KCTC 52651의 유전체 분석 (Complete genome sequence of Flavobacteriaceae strain KCTC 52651 isolated from seawater recirculating aquaculture system)

  • 김영삼;전용재;김경호
    • 미생물학회지
    • /
    • 제55권2호
    • /
    • pp.174-176
    • /
    • 2019
  • Flavobacteriaceae 과에 속하는 신균주인 RR4-38(= KCTC 52651 = DSM 108068)가 한국의 해수 순환여과양식시스템의 생물여과조에서 분리되었다. 41.9%의 G+C 함유량을 가진 3,182,272 bp의 길이의 하나의 완전한 유전체 컨티그가 PacBio RS II를 이용하여 얻어졌다. 이 유전체는 2,829개의 단백질 암호화 유전자와 6개의 rRNA 유전자, 38개 tRNA 유전자, 4개의 ncRNA 유전자, 9개의 유사유전자를 포함하고 있다. 이 결과는 해수 순환여과양식시스템에서 미생물의 활성을 이해하는데 통찰력을 줄 것이다.