• 제목/요약/키워드: reciprocating loading

검색결과 12건 처리시간 0.02초

왕복동식 압축기 저널 베어링부의 마찰손실 측정 (Measurements of Friction Losses at Journal Bearings in a Reciprocating Compressor)

  • 박성환;김영환;박상신
    • Tribology and Lubricants
    • /
    • 제26권4호
    • /
    • pp.224-229
    • /
    • 2010
  • A new test rig is presented to measure friction losses at journal bearings in a reciprocating compressor. This rig consists of a test bearing, torque sensor, driving motor and loading parts especially for vertical shaft. Friction losses are obtained by measuring torque between motor and test bearing. The experiments are carried out at several rotational speeds and temperatures. The test results are presented and discussed.

Study on seismic performance of exterior reinforced concrete beam-column joint under variable loading speeds or axial forces

  • Guoxi Fan;Wantong Xiang;Debin Wang;Zichen Dou;Xiaocheng Tang
    • Earthquakes and Structures
    • /
    • 제26권1호
    • /
    • pp.31-48
    • /
    • 2024
  • In order to get a better understanding of seismic performance of exterior beam-column joint, reciprocating loading tests with variable loading speeds or axial forces were carried out. The main findings indicate that only few cracks exist on the surface of the joint core area, while the plastic hinge region at the beam end is seriously damaged. The damage of the specimen is more serious with the increase of the upper limit of variable axial force. The deflection ductility coefficient of specimen decreases to various degrees after the upper limit of variable axial force increases. In addition, the higher the loading speed is, the lower the deflection ductility coefficient of the specimen is. The stiffness of the specimen decreases as the upper limit of variable axial force or the loading speed increase. Compared to the influence of variable axial force, the influence of the loading speed on the stiffness degradation of the specimen is more obvious. The cumulative energy dissipation and the equivalent viscous damping coefficient of specimen decrease with the increase of loading speed. The influence of variable axial force on the energy dissipation of specimen varies under different loading speeds. Based on the truss model, the biaxial stress criterion, the Rankine criterion, the Kent-Scott-Park model, the equivalent theorem of shearing stress, the softened strut-and-tie model, the controlled slip theory and the proposed equations, a calculation method for the shear capacity is proposed with satisfactory prediction results.

중속 디젤엔진 크랭크축의 피로해석 (Fatigue Analysis of Crankshaft for Medium-speed Diesel Engine)

  • 손정호;이종환;김원현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.549-553
    • /
    • 2007
  • Moving parts of the rotating and reciprocating mechanism are the most important components of the diesel engines and require very high reliability in their design. Especially the crankshaft, the key component of running gear (powertrain), is subject to complicated loadings such as bending, shear and torsion coming from firing pressure, inertia forces and torsional vibration of crankshaft system. Intrinsically they show different cyclic patterns of loading in both direction and magnitude, and thus ordinary approach of proportional loading is less valid to analyze the dynamic structural behavior of crankshaft. In this paper, new fatigue analysis method is introduced to analyze and design the crankshaft of a medium-speed diesel engine in order to consider the non-proportional multi-axial loads realistically as well as to present the general fatigue analysis approach for an engine crankshaft.

  • PDF

커넥팅 로드 베어링의 EHL에 관한 수치해석 (A Numerical Analysis of the Elastohydrodynamic Lubrication of Connecting Rod Bearings)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제12권3호
    • /
    • pp.63-71
    • /
    • 1996
  • The connecting rod bearing, which is subjected to periodical dynamic loading, is an impoRant component of the reciprocating engine. In the operation of this bearing, significant parameters are the oil film thickness and the film pressure. Peak film pressures of 20-30 MPa are not uncommon. So the elastic deformation of the bearing housing can have a significant effect on the bearing performance. In this study, a numerical analysis of connecting rod bearing is investigated. Elastic deformation of the bearing housing is considered in the analysis. Separate hydrodynamic and structural analysis are coupled through a direct iterative process. It is shown that as the result of the elastic deformation of the bearing housing, the eccentricity ratio is increased, and the minimum value of the minimum film thickness and the maximum value of the maximum film pressure are decreased. The variations of rotational speed and cylinder pressure affect the minimum film thickness and the maximum film pressure variations of the connecting rod bearing.

파로설계에 관한 소고 (A Study on the Design against Metal Fatigue)

  • 이순복
    • 한국기계연구소 소보
    • /
    • 제4권1호
    • /
    • pp.19-26
    • /
    • 1981
  • Fatigue, the birth and growth of cracks in metal parts subjected to repeated loading, has been a problem plaguing engineers since the Industrial Revolution and the advent of rotating or reciprocating machinery. Designing against metal fatigue was studied briefly in several aspects. Examples of fatigue failures were shown. Fatigue was classified by loading: uniaxial Fatigue, multiaxial fatigue, cumulative fatigue da¬mage. Fatigue design criteria were discussed: Infinite-Life Design, Safe-Life Design, Fail-Safe Design, and Damage Tolerant Design. Mitigation of notch effects by design, improvement of fatigue strength of metal parts by residual stress and surface finishing were discussed. Relative fatigue beha¬vior was studied under various environmantal conditions. Especially the effects of corrosion, temperature, fretting, and irradiation were covered.

  • PDF

Studies on restoring force model of concrete filled steel tubular laced column to composite box-beam connections

  • Huang, Zhi;Jiang, Li-Zhong;Zhou, Wang-Bao;Chen, Shan
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1217-1238
    • /
    • 2016
  • Mega composite structure systems have been widely used in high rise buildings in China. Compared to other structures, this type of composite structure systems has a larger cross-section with less weight. Concrete filled steel tubular (CFST) laced column to box-beam connections are gaining popularity, in particular for the mega composite structure system in high rise buildings. To enable a better understanding of the destruction characteristics and aseismic performance of these connections, three different connection types of specimens including single-limb bracing, cross bracing and diaphragms for core area of connections were tested under low cyclic and reciprocating loading. Hysteresis curves and skeleton curves were obtained from cyclic loading tests under axial loading. Based on these tested curves, a new trilinear hysteretic restoring force model considering rigidity degradation is proposed for CFST laced column to box-beam connections in a mega composite structure system, including a trilinear skeleton model based on calculation, law of stiffness degradation and hysteresis rules. The trilinear hysteretic restoring force model is compared with the experimental results. The experimental data shows that the new hysteretic restoring force model tallies with the test curves well and can be referenced for elastic-plastic seismic analysis of CFST laced column to composite box-beam connection in a mega composite structure system.

Fatigue wear of polyamides with surface defects under different loading conditions

  • Abdelbary, Ahmed;Nasr, Mohamed N.A.
    • Advances in materials Research
    • /
    • 제5권3호
    • /
    • pp.193-203
    • /
    • 2016
  • Compared to metal-to-metal tribology, polymer tribology presents further complexity as it is more prone to be influenced by operating conditions. Over the past two decades, progress in the field of wear of polymers has led to the establishment of more refined wear mechanisms. The current paper establishes the link between different load parameters and the wear rate of polymers, based on experimental investigations. A pin-on-plate reciprocating tribometer was used to examine the wear behaviour of polyamide sliding against a steel counterface, under constant and fluctuating loads, in dry conditions. In addition, the influence of controlled imperfections in the polymer surface upon its wear rate were examined, under cyclic and steady loading, in order to better understand surface fatigue wear of polymers. The imposed imperfections consisted of vertical artificial deep crack (slit) perpendicular or parallel to the direction of sliding. The study concludes with the followings findings; in general, wear of polymers shows a significant tendency to the type of applied load. Under cyclic loads, polymers show an increase in wear rate compared to those tested under static loads. Such increase was found to increase with the increase in cyclic load frequency. It is also demonstrated that surface cracks results in higher wear rates, particularly under cyclic loads.

파력발전용 임펄스 터어빈의 자기 기동 특성 해석 (A Study of Self Starting Characteristics of Impulse Turbine of Wave Energy Conversion)

  • 문재승;현범수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.220-224
    • /
    • 2004
  • The present paper deals with the numerical study to analyze the self-starting performance of impulse turbine in a reciprocating air flow generated by sinusoidal motion of wave inside oscillating water column. Result was compared to that of Wells turbine, well-known wave energy conversion device, and showed that the impulse turbine has a superior self-starting ability. More detailed parametric study was performed to demonstrate the effects of moment of inertia of rotor, loading torque, tip clearance and angle of guide vane.

  • PDF

Research on hysteretic characteristics of EBIMFCW under different axial compression ratios

  • Li, Sheng-cai;Lin, Qiang
    • Earthquakes and Structures
    • /
    • 제22권5호
    • /
    • pp.461-473
    • /
    • 2022
  • Energy-saving block and invisible multiribbed frame composite wall (EBIMFCW) is an important shear wall, which is composed of energy-saving blocks, steel bars and concrete. This paper conducted seismic performance tests on six 1/2-scale EBIMFCW specimens, analyzed their failure process under horizontal reciprocating load, and studied the effect of axial compression ratio on the wall's hysteresis curve and skeleton curve, ductility, energy dissipation capacity, stiffness degradation, bearing capacity degradation. A formula for calculating the peak bearing capacity of such walls was proposed. Results showed that the EBIMFCW had experienced a long time deformation from cracking to failure and exhibited signs of failure. The three seismic fortification lines of the energy-saving block, internal multiribbed frame, and outer multiribbed frame sequentially played important roles. With the increase in axial compression ratio, the peak bearing capacity and ductility of the wall increased, whereas the initial stiffness decreased. The change in axial compression ratio had a small effect on the energy dissipation capacity of the wall. In the early stage of loading, the influence of axial compression ratio on wall stiffness and strength degradation was unremarkable. In the later stage of loading, the stiffness and strength degradation of walls with high axial compression ratio were low. The displacement ductility coefficients of the wall under vertical pressure were more than 3.0 indicating that this wall type has good deformation ability. The limit values of elastic displacement angle under weak earthquake and elastic-plastic displacement angle under strong earthquake of the EBIMFCW were1/800 and 1/80, respectively.

Constant amplitude fatigue test of high strength bolts in grid structures with bolt-sphere joints

  • Yang, Xu;Lei, Honggang
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.571-579
    • /
    • 2017
  • The grid structure with bolt-sphere joints is widely adopted by industrial plants with suspending crane. The alternating reciprocating action of the suspending crane will cause fatigue problems of the grid structure with bolt-sphere joints with respect to the rod, the cone, the sealing plate, the bolt ball and the high strength bolt; while the fatigue of the high strength bolt is the key issue of fatigue failure. Based on efficient and smooth loading equipment with the AMSLER fatigue testing machine, this paper conducted a constant amplitude fatigue test on 18 M20 and 14 M30 high strength bolts with 40Cr material, and obtained 19 valid failure points, 9 unspoiled points with more than 2 million cycles, and 4 abnormal failure points. In addition, it established the constant amplitude fatigue design method, ${[{\Delta}{\sigma}]_{{2{\times}10}}{^6=58.91MPa}$, and analyzed the stress concentration and the fatigue fracture of high strength bolts. It can be explained that the geometrical stress concentration of high-strength bolt caused by spiral burr is severe.