• Title/Summary/Keyword: recharge

Search Result 501, Processing Time 0.025 seconds

Study on the rainwater recharge model using the groundwater variation and numerical solution of quasi-three dimensional two-phase groundwater flow

  • Tsutsumi, Atsushi;Jinno, Kenji;Mori, Makito;Momii, Kazuro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05b
    • /
    • pp.1034-1040
    • /
    • 2002
  • A rainwater recharge model, which is combined with the quasi-three dimensional unconfined groundwater flow, is proposed in the present paper. The water budget in the catchments of the planned new campus of Kyushu University is evaluated by the present method that calculates both the surface runoff and groundwater flow simultaneously. The results obtained in the present study reveal that the calculated monthly and annual runoff discharges agree reasonably well with the observed discharge. Combining the rainwater recharge model, the two-phase groundwater flow equation is numerically solved f3r the entire area including the low land where the salt water intrusion is observed. The calculated depth of the salt-fresh interface agrees reasonably well with the observed ones at several cross sections. On the other hand, however, it is found that the calculated water budget remains uncertain because of lack of information on the accurate potential evapotranspiration including rainfall interception. In conclusion, however, it is found that the proposed method is applicable for the areas where the horizontal flow is dominant and the interface is assumed to be sharp.

  • PDF

An Electrical Resistivity Survey for the Characterization of Alluvial Layers at Groundwater Artificial Recharge Sites (지하수 인공함양 지역 충적층 특성 평가를 위한 전기비저항탐사)

  • Won, Byeongho;Shin, Jehyun;Hwang, Seho;Hamm, Se-Yeong
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.154-162
    • /
    • 2013
  • Vertical electrical sounding and 2D electrical resistivity survey were applied for evaluating the characteristics of alluvial layers at a groundwater artificial recharge site. The fine particles in alluvial layer, main target layer of groundwater artificial recharge, may cause clogging phenomena. In this case, electrical resistivity method is an effective technique to verify the spatial distribution of low-resistivity layers, such as saturated silts and clays. On the other hand, much attention should be paid to interpret the resistivity data in unconsolidated layers, because thick clayey overburden sometimes produces a masking effect on underlying interbedded resistive sands and gravels. Considering these points, we designed 35 points arranged in a grid form for vertical electrical sounding and 10 lines for 2D electrical resistivity survey, and concentrated our effort on enhancing the vertical and horizontal resolution of resistivity images. According to the results, 15 meters thick layers consisting of sands and gravels are located in 30 meters below ground. And the spatial distribution of silts and clays are mapped, which may cause clogging. Consequently, this approach can contribute to design and determine the location and depth of injection and observation wells for groundwater artificial recharge.

Fluoride Release and Recharge Properties of Several Fluoride-Containing Restorative Materials (수종의 불소함유 수복재의 불소 유리 및 재충전)

  • Lee, Dongyun;Kim, Jongsoo;Han, Miran;Shin, Jisun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.47 no.2
    • /
    • pp.196-204
    • /
    • 2020
  • The aim of the study is to compare the fluoride release and recharge properties of glass ionomer cements and 'alkasite'. Specimens of two glass ionomer cements (Fuji IX GP and Riva Self Cure), 'alkasite' restorative material (Cention N) and composite resin (Filtek™ Z350XT) were prepared. The fluoride release of each specimen was measured for 28 days. Thereafter, 1.23% acidulated phosphate fluoride (APF) gel was applied to experimental groups. No treatment was performed on control groups. The fluoride release was measured for additional 7 days to evaluate the fluoride recharge properties of each materials. The fluoride release was highest in Riva Self Cure, followed by Fuji IX GP, Cention N (p < 0.05). Fluoride release of Cention N was measured to be approximately 49% of Fuji IX GP's. After the application of 1.23% APF gel, increases in fluoride release were observed in Riva Self Cure, Fuji IX GP and Cention N (p < 0.05). Fluoride recharge was observed in Cention N as well as in glass ionomer cements. Further studies are required to evaluate the anti-cariogenic properties of Cention N at clinical conditions.

Lead Transport in Groundwater in Door County, Wisconsin (위스컨신주 도어지역의 지하수내 납성분의 이동)

  • Woo, Nam C.
    • Economic and Environmental Geology
    • /
    • v.27 no.1
    • /
    • pp.93-100
    • /
    • 1994
  • This study examined the mechanisms of lead transport in the groundwater system and those of irregular detections in groundwater in Door County, Wisconsin. During the spring recharge period in 1991, water-level movement and water-quality change were monitored from two monitoring wells equipped with three piezometers each and from five house wells, respectively. Water-level responses to recharge events were fast with a relatively short lag time ranging from 3 to 10 days, indicating that recharge of groundwater occurs through the high hydraulic conductivity (K) zones in the Silurian dolomite aquifer system. Lead was detected only on particles filtered from groundwater, but not in dissolved state. Concentrations ranged from 0.2 to $7.1{\mu}g/mg$, converted into the total lead concentration in groundwater ranging from $0.3{\mu}g/l$ to $4.7{\mu}g/l$. A lag time between recharge events and peak particle movement at the sampled wells was estimated to range from 19 to 22 days. Due to the particulate nature of lead in groundwater, only the wells connected with the high K zones detect lead, causing the spatial variation. In a given well, lead concentration varies at different sampling times due to the variation in the initial amounts of lead-carrying particles introduced into the groundwater system during recharge events, the lag in particle transport and the dispersion of lead-carrying particles along the advective flowpaths.

  • PDF

암반지하수 저류지 개발 전망

  • 이기철;한정상;부성안;장준영;박종철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • When the United Nation classified as Korea is the one of the water deficit country. The consensus was made that the water is the one of the precious national resources. Government increases their R/D budget trying to get more clean water bodies. For instances, 'Sustainable Water Resources Development' project is the one of major title in '21 Century Frontier Research project and there are several small research projects are undergoing by the Ministry of Agriculture and KARICO. However, when the environmental preservation issue has been get more emphasis, construction of the Surface Dam met the blockage from the environmentalists due to the problem of the their water buried area. Since the most fitting site for surface dam had been used in the past, some engineer move their focus on modification of the existing Dam's height to enlarge its capacity or dredging the bottom of the reservoir recently However dredging evoke water quality problem in return by accumulated materials at the bottom. Last year the Dong Gang Dam plan has been canceled by environmental problem in water buried area of the reservoir. With the point of this view, ground water gets more focus for the one of the useful alternative for clean water bodies. Underground dam technique which had widely applied once in the early nineteen eighties by the KARICO and attenuated due to engineering insufficiency. The technique is newly studied with the advanced engineering technique. Still groundwater usage rate in Korea is much lower comparing with the advanced countries and has many rooms to develop. Wells, under ground dam and radial collector wells are typical facilities up to now. There is little application in Korea for the Recharge Dam, which had been widely used in the advanced countries. The Recharge Dam is technique to conjunct surface water and groundwater body together, This technique had developed to increase groundwater recharge at the beginning This research is the result of the study on the possibility of the development of the new technology, Groundwater Reservoir' which was modified from Recharge Dam. Groundwater Reservoir is like a deep artificial lakes trenched in hard rock aquifer to get groundwater. The advantage of the Groundwater Reservoir is followings 1) It can be developed at the plains area, not in the deep valley 2) Huge water body can be developed without dam 3) Small buried area comparing surface water dam makes the least environmental effect. 4) Trenching cost can be substitute by the income of the selling rock debris 5) Outfit of the reservoir can be modified to match with the site prospect 6) Rock debris can be used as constructing materials 7) It can be used as groundwater recharge system when the heavy rains comes 8) The reservoir looks like scenery lake with huge clean water bodies.

  • PDF

Global Optimization of Placement of Multiple Injection Wells with Simulated Annealing (담금질모사 기법을 이용한 인공함양정 최적 위치 결정)

  • Lee, Hyeonju;Koo, Min-Ho;Kim, Yongcheol
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.67-81
    • /
    • 2015
  • A FORTRAN program was developed to determine the optimal locations of multiple recharge wells in an aquifer with different arrangements of pumping wells. The simulated annealing algorithm was used to find optimal locations of two recharge wells which satisfied three objective functions. The model results show that locating two injection wells inside the cluster of pumping wells is efficient if the recovery rate only was taken into account. In contrast, placing injection wells to the side of the cluster is desirable if the simulation considers aggregate objective function. Therefore, installing an injection well on each side of the cluster seems to yield the maximum recovery rates for the existing pumping wells, and it yields similar increases in pumping rate for all wells in the cluster. The locations of recharge wells can be arranged in numerous configurations, because there are multiple near-optimal local minima or maxima. These results indicate that the simulated annealing can yield effective evaluations of the optimal locations of multiple recharge wells. In addition, the suggested aggregate objective function can be utilized as an appropriate multi-objective optimization.

Groundwater Flow and Water Budget Analyses using HydroGeoSphere Model at the Facility Agricultural Complex (시설농업단지에서 HydroGeoSphere 모델을 이용한 지하수 유동 및 물수지 분석)

  • Kang, Dong-hwan;So, Yoon Hwan;Kim, Il Kyu;Oh, Se-bong;Kim, Suhong;Kim, Byung-Woo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.313-322
    • /
    • 2017
  • The purpose of this study is to estimate the surface and subsurface flows through the modelling of the model area and facility agricultural complex, and to calculate the groundwater recharge rate through water budget analysis. From results of surface flow modeling, the surface water is flowed to a depth of about 1 to 5 meters from the upper region (northeast) to the lower region (southeast) of the Miryang River. At the M01 point (upper), the observed surface water flux and the model surface water flux are consistent. At the M02 points (lower), the observed surface water flux and the model surface water flux are a difference of 1%. From results of subsurface flow modeling, the depth of groundwater is similar to elevation in the river and higher to the forest area. Ground water depth considering groundwater pumping is that the model values appears higher than the observed values to be within 1.5 m. From results of surface-subsurface integrated modeling, the groundwater recharge area is estimated about 90% of the model area, and the groundwater recharge rate is estimated $1.92{\times}10^5m^3/day$. From results of annual water budget analysis, the groundwater recharge rate per unit area is estimated to be 503.9 mm/year, and average annual rainfall is estimated at around 39%.

Assessment for the Possibility of Water-ecosystem Restoration Applying LID Techniques in the Deokjin Park Area, Jeonju City (LID기법을 이용한 전주 덕진공원의 수생태 복원 가능성 평가)

  • Choi, Seung-Hyun;Kim, Seok-Hwi;Kim, Kangjoo
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.477-490
    • /
    • 2015
  • In this study, we investigated the restoration possibility of the old streams by enhancing the rainwater infiltration in the watershed of Deokjin Park, Jeonju City. This study was performed by modeling groundwater discharge to the streams under various conditions. We assessed the amount and location of groundwater recharge enhancement to restore the streams and evaluated whether the baseflows of the restored streams are sufficient to keep the water ecosystem of the Deokjin Pond. The results show that the baseflow of the streams can persist for a longer time even during the dry season when the rainwater drainage system is recovered similarly to the those before development using low impact development (LID) techniques. The enhancements of recharge in the headwater area, which is the area around the zoo and Daeji Village in the Deokjin Park watershed, is useful to increase the baseflows of the downstream reaches. Furthermore, spreaded recharge over a widespread area is better to prevent the streams from drying than the intensive recharge at a few sites.

A Study on groundwater and pollutant recharge in urban area: use of hydrochemical data

  • Lee, Ju-Hee;Kwon, Jang-Soon;Yun, Seong-Taek;Chae, Gi-Tak;Park, Seong-Sook
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.119-120
    • /
    • 2004
  • Urban groundwater has a unique hydrologic system because of the complex surface and subsurface infrastructures such as deep foundation of many high buildings, subway systems, and sewers and public water supply systems. It generally has been considered that increased surface impermeability reduces the amount of groundwater recharge. On the other hand, leaks from sewers and public water supply systems may generate the large amounts of recharges. All of these urban facilities also may change the groundwater quality by the recharge of a myriad of contaminants. This study was performed to determine the factors controlling the recharge of deep groundwater in an urban area, based on the hydrogeochemical characteristics. The term ‘contamination’ in this study means any kind of inflow of shallow groundwater regardless of clean or contaminated. For this study, urban groundwater samples were collected from a total of 310 preexisting wells with the depth over 100 m. Random sampling method was used to select the wells for this study. Major cations together with Si, Al, Fe, Pb, Hg and Mn were analyzed by ICP-AES, and Cl, N $O_3$, N $H_4$, F, Br, S $O_4$and P $O_4$ were analyzed by IC. There are two groups of groundwater, based on hydrochemical characteristics. The first group is distributed broadly from Ca-HC $O_3$ type to Ca-C1+N $O_3$ type; the other group is the Na+K-HC $O_3$ type. The latter group is considered to represent the baseline quality of deep groundwater in the study area. Using the major ions data for the Na+K-HC $O_3$ type water, we evaluated the extent of groundwater contamination, assuming that if subtract the baseline composition from acquired data for a specific water, the remaining concentrations may indicate the degree of contamination. The remainder of each solute for each sample was simply averaged. The results showed that both Ca and HC $O_3$ represent the typical solutes which are quite enriched in urban groundwater. In particular, the P$CO_2$ values calculated using PHREEQC (version 2.8) showed a correlation with the concentrations of maior inorganic components (Na, Mg, Ca, N $O_3$, S $O_4$, etc.). The p$CO_2$ values for the first group waters widely ranged between about 10$^{-3.0}$ atm to 10$^{-1.0}$ atm and differed from those of the background water samples belonging to the Na+K-HC $O_3$ type (<10$^{-3.5}$ atm). Considering that the p$CO_2$ of soil water (near 10$^{-1.5}$ atm), this indicates that inflow of shallow water is very significant in deep groundwaters in the study area. Furthermore, the P$CO_2$ values can be used as an effective parameter to estimate the relative recharge of shallow water and thus the contamination susceptibility. The results of our present study suggest that down to considerable depth, urban groundwater in crystalline aquifer may be considerably affected by the recharge of shallow water (and pollutants) from an adjacent area. We also suggest that for such evaluation, careful examination of systematically collected hydrochemical data is requisite as an effective tool, in addition to hydrologic and hydrogeologic interpretation.ion.ion.

  • PDF