• 제목/요약/키워드: receptors

검색결과 2,487건 처리시간 0.029초

Mequitazine의 Muscarine수용체에 대한 작용 (Effect of Mequitazine on the Muscarinic Receptors)

  • 이신웅;장태수
    • Biomolecules & Therapeutics
    • /
    • 제3권3호
    • /
    • pp.192-198
    • /
    • 1995
  • The affinity of mequitazine, a non-sedating antihistamine, for muscarinic receptors was evaluated in the guinea-pig ventricle and ileum by in vitro binding techniques and functional studies. In binding studies, [$^3$H]quinuclidinyl benzilate (QNB) identified a single class of muscarinic receptors with similar apparent $K_{D}$ value of about 100 pM in two tissues. Mequitazine inhibited [$^3$H]QNB binding to muscarinic receptors competitively. Analysis of the mequitazine inhibition curve of [$^3$H]QNB binding to ventricular microsome and ileal homogenate indicated the presence of a single homogeneous binding site with Ki value of 25 nM and 18 nM, respectively. In functional studies, mequitazine caused parallel rightward shifts of concentration-response curves for carbachol and histamine in the isolated guinea-pig ileum. The slope values obtained from Schild plot analysis for the antagonistic action of mequitazine on muscarinic and histamine $H_1$-receptors were not significantly different from unity. The p $A_2$values of mequitazine for muscarinic and histamine $H_1$-receptors were about 7.6 ( $K_{M}$= 25.1 nM) and 8.88 ( $K_{H}$= 1.32 nM), respectively. These results indicate that the muscarinic receptor blocking action of mequitazine is 15 times less potent than the $H_1$receptor blocking action, but high concentration of this drug may cause the peripheral muscarinic receptor blocking effect.t.t.t.

  • PDF

$GABA_A$-Benzodiazepine 수용체 이상과 불안장애 ([ $GABA_A$ ]-Benzodiazepine Receptor and Anxiety Disorder)

  • 이상열;박민철;강희자
    • 대한불안의학회지
    • /
    • 제1권1호
    • /
    • pp.25-30
    • /
    • 2005
  • In the 40 years since the first benzodiazepine was brought into clinical use there has been a substantial growth in understanding the molecular basis of action of these drugs and the role of their receptors in anxiety disorders. Benzodiazepine receptors are present throughout the brain with the highest concentration in cortex, and it potentiate and prolong the synaptic action of the inhibitory neurotransmitter GABA. Central benzodiazepine receptors and $GABA_A$ receptors are part of the same macromolecular complex. Abnormalities of these $GABA_A$-benzodiazepine receptors as a result of drug challenge tests and neuroimaging studies may underlie some anxiety disorders. The role of $GABA_A$-benzodiazepine receptors in the action of benzodiazepine and as a factor in anxiety disorder, in both animal and humans including knock-out and knock in technique, may lead to new anxiolytics that have potentially significant therapeutic gains without unwanted side effects.

  • PDF

NMDA Receptor Antagonists Enhance 5-HT2 Receptor-Mediated Behavior, Head-Twitch Response, in PCPA-Treated Mice

  • Kim, Hack-Seang;Park, In-Sook;Lim, Hwa-Kyung;Choi, Hong-Seork
    • Archives of Pharmacal Research
    • /
    • 제22권2호
    • /
    • pp.113-118
    • /
    • 1999
  • Previous work in our laboratory has shown that the N-methyl-D-aspartate (NMDA) receptor antagonists, AP-5, CPP, MK-801, ketamine, dextrorphan and dextromethorphan cause a pronounced enhancement of 5-hydroxytryptamine (5-HT)-induced head-twitch response (HTR) in intact mice, suggesting the involvement of NMDA receptors in the glutamatergic modulation of serotonergic function at the postsynaptic $5-HT_{2}$ receptors. The purpose of this study was to extend our previous work on the behavioral interaction between glutamatergic and serotonergic receptors. In the present study, both competitive (AP-5 and CPP) and noncompeti-tive (MI-801, ketamine, dextrorphan and dextromethorphan) NMDA receptor antagonists markedly enhanced 5-HT-induced selective serotonergic behavior, HTR, in p-chlorophenylalanine (PCPA)-treated mice which were devoid of any involvement of indirect serotonergic function, to establish the involvement of the NMDA receptor in 5-HT-induced HTR at the postsyaptic $5-HT_{2}$receptors. In addition, the enhancement of 5-HT-induced HTR was inhibited by a dopamine agonist, apomorphine, NMDA receptor antagonist, NMDA and a serotonin $5-HT_{2}$receptor antagonist, cyproheptadine, in PCPA-treated mice. Therefore, the present results support our previous conclusion that the NMDA receptors play an important role in the glutamatergic modulation of serotonergic function at the poststynaptic $5-HT_{2}$ receptors.

  • PDF

Expression of neurotransmitter receptors in oral keratinocytes and their response to agonists

  • Choi, Eun Ji;Chang, Sung-Ho;Choi, Se-Young;Choi, Youngnim
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.39-44
    • /
    • 2021
  • This study aimed to investigate whether neurotransmitter receptors in the nervous system were also expressed in oral keratinocytes. Expressions of various neurotransmitter receptor genes in immortalized mouse oral keratinocyte (IMOK) cells were examined by reverse transcriptase polymerase chain reaction. IMOK cells expressed calcitonin gene-related peptide (CGRP) receptor subunit genes Ramp1 and Ramp3 and glutamate receptor subunit genes Grina, Gria3, Grin1, Grin2a, and Grin2d. Moreover, IMOK cells expressed Adrb2 and Chrna5 that encode beta 2 adrenergic receptor and cholinergic receptor nicotinic alpha 5 for sympathetic and parasympathetic neurotransmitters, respectively. The expression of Bdkrb1 and Ptger4, which encode receptors for bradykinin and prostaglandin E2 involved in inflammatory responses, was also observed at low levels. Expressions of Ramp1 and Grina in the mouse gingival epithelium were also confirmed by immunohistochemistry. When the function of neurotransmitter receptors expressed on IMOK cells was tested by intracellular calcium response, CGRP, glutamate, and cholinergic receptors did not respond to their agonists, but the bradykinin receptor responded to bradykinin. Collectively, oral keratinocytes express several neurotransmitter receptors, suggesting the potential regulation of oral epithelial homeostasis by the nervous system.

Structural studies of serotonin receptor family

  • Apeksha Parajulee;Kuglae Kim
    • BMB Reports
    • /
    • 제56권10호
    • /
    • pp.527-536
    • /
    • 2023
  • Serotonin receptors, also known as 5-HT receptors, belong to the G protein-coupled receptors (GPCRs) superfamily. They mediate the effects of serotonin, a neurotransmitter that plays a key role in a wide range of functions including mood regulation, cognition and appetite. The functions of serotonin are mediated by a family of 5-HT receptors including 12 GPCRs belonging to six major families: 5-HT1, 5-HT2, 5-HT4, 5-HT5, 5-HT6 and 5-HT7. Despite their distinct characteristics and functions, these receptors' subtypes share common structural features and signaling mechanisms. Understanding the structure, functions and pharmacology of the serotonin receptor family is essential for unraveling the complexities of serotonin signaling and developing targeted therapeutics for neuropsychiatric disorders. However, developing drugs that selectively target specific receptor subtypes is challenging due to the structural similarities in their orthosteric binding sites. This review focuses on the recent advancements in the structural studies of 5-HT receptors, highlighting the key structural features of each subtype and shedding light on their potential as targets for mental health and neurological disorders (such as depression, anxiety, schizophrenia, and migraine) drugs.

m2 Muscarinic Receptors Stimulate Neuronal Nitric Oxide Synthase

  • Lee, Seok-Yong;Park, Sun-Hye;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.208-208
    • /
    • 1996
  • In this work we investigated coupling of the m2 and m4 subtypes of muscarinic acetylcholine receptors expressed in chinese hamster ovary (CHO) cells to activation of neuronal nitric oxide synthase (nNOS). Stimulation of guanylate cyclase activity in detector neuroblastoma cells was used as an index of generation of nitric oxide (NO) in CHO cells. The agonist carbachol induced marked time and concentration-dependent enhancement of the activity of nNOS at m2 receptors. In sharp contrast, the response in CHO cells transfected with the m4 receptor gene was similar in magnitude to that observed in non-transfected cells, suggesting lack of significant coupling of m4 muscarinic receptors to NO signaling. This novel observation of functional divergence of the two muscarinic receptor subtypes at the level of activation of nNOS is quite intriguing, in light of the currently accepted dogma that they belong to the same functional class. This functional selectivity was not due to differential effects on intracellular Ca$\^$2+/ concentration, since activation of both subtypes of muscarinic receptors produced a comparable, albeit quite small, Ca$\^$2+/ signal. Taken together, our present data strongly suggest that the generally assumed functional equivalence of m2 and m4 muscarinic receptors should be carefully reexamined. These data also suggest the presence of alternate mechanisms of activation of nNOS, which might be operative in the absence of large changes in the concentration of cellular Ca$\^$2+/. The latter mechanisms are expected to be activated by m2, but not m4 muscarinic receptors. Both sets of findings are quits important in regards to refining the functional classification of muscarinic receptor subtypes and the cellular mechanisms of activation of NOS.

  • PDF

Mutation of a Transposed Amino Acid Triplet Repeat Enhances Coupling of m1 Muscarinic Receptor to Activation of Phospholipase C

  • Lee, Seok-Yong;Cho, Tai-Soon
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 춘계학술대회
    • /
    • pp.206-206
    • /
    • 1996
  • The C-terminus ends of the second putative transmembrane domains of both m1 and m2 muscarinic receptors contain a triplet of amino acid residues consisting of leucine (L), tyrosine (Y) and threonine (T), This triplet is repeated as LYT-LYT in m2 receptors at the interface between the second transmembrane domain and the first extracellular loop. Interestingly, however, it is repeated in a transposed fashion (LYT-TYL) in the sequence of m1 receptors. In this work we employed site-directed mutagenesis to investigate the possible significance of this unique sequence diversity for determining the distinct differential drug-receptor interaction and cellular function at m1 muscarinic receptor. Mutation of the LYTTYL sequence of m1 receptors to the corresponding m2 receptor LYTLYT sequence, however, did not result in a significant change in the binding affinity of the agonist carbachol or in the affinity of the majority of a series of receptor antagonists which are able to discriminate between wild-type m1 and m2 receptors. Surprisingly, the LYTLYT ml receptor mutant demonstrated markedly enhanced coupling to activation of phospholipase C without a change in its coupling to increased cyclic AMP formation. There was also an enhanced receptor sensitivity in transducing elevation of intracellular Ca$\^$2+/. These changes were not due to alterations in the rate of receptor. desensitization or sequestration, On the other hand, the reverse LYTLYT-LYTTYL mutation in the m2 receptor did not alter its coupling to inhibition of adenylate cyclase, but slightly enhanced its coupling to stimulation of PI hydrolysis, Our data suggest that the LYTTYL/LYTLYT sequence difference between ml and n12 muscarinic receptors is not involved in determining receptor pharmacology. On the other hand, while these differences might play a role in the modulation of muscarinic receptor coupling to PI hydrolysis, they are not important for specifying coupling of various subtypes of muscarinic receptors to different cellular signaling pathways.

  • PDF

Regulation of Adenosine Receptors in Rat Brain following Chronic Carbamazepine Treatment

  • Park, Kyung-Sun;Yang, Wan-Suk;Kim, Kyung-Hwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권1호
    • /
    • pp.13-17
    • /
    • 1997
  • Carbamazepine (CBZ), an anticonvulsant, has beeen reported to displace ligands at adenosine receptors. Several studies have demonstrated that as far as $A_2$adenosine receptors is concerned, CBZ acts as an antagonist. However, the situation with regard to Al receptors is less straightforward. In this study, we describe the effects of one-week CBZ treatment (25 mg/kg/day) on cerebrocortical $A_1$ adenosine receptors. $A_1$ adenosine receptor bindings as determined by using $[^3CH]DPCPX$ was not significantly altered in membranes prepared from CBZ-treated rats. However, there was a significant decrease in the $A_1$ adenosine receptor-mediated stimulation of $[^{35}S]GTP_{\gamma}S$ binding to cerebrocortical membranes prepared from CBZ-treated rats (20.0% decrease in basal activity; 17.8% decrease in maximal activity). The basal and $10^{-4}$ M forskolin-stimulated adenylyl cyclase activities were relatively unaffected by CBZ treatment, but 10 mM NaF-stimulated adenylyl cyclase activity was significantly reduced in CBZ-treated rats. It appears that one-week CBZ treatment caused an uncoupling of adenosine receptors from G proteins without alteration of $A_1$ adenosine receptor molecules, suggesting that CBZ acts as an agonist at $A_1$ adenosine receptors in rat brain.

  • PDF

Regional difference in spontaneous firing inhibition by GABAA and GABAB receptors in nigral dopamine neurons

  • Kim, Yumi;Jang, Jinyoung;Kim, Hyun Jin;Park, Myoung Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권6호
    • /
    • pp.721-729
    • /
    • 2018
  • GABAergic control over dopamine (DA) neurons in the substantia nigra is crucial for determining firing rates and patterns. Although GABA activates both $GABA_A$ and $GABA_B$ receptors distributed throughout the somatodendritic tree, it is currently unclear how regional GABA receptors in the soma and dendritic compartments regulate spontaneous firing. Therefore, the objective of this study was to determine actions of regional GABA receptors on spontaneous firing in acutely dissociated DA neurons from the rat using patch-clamp and local GABA-uncaging techniques. Agonists and antagonists experiments showed that activation of either $GABA_A$ receptors or $GABA_B$ receptors in DA neurons is enough to completely abolish spontaneous firing. Local GABA-uncaging along the somatodendritic tree revealed that activation of regional GABA receptors limited within the soma, proximal, or distal dendritic region, can completely suppress spontaneous firing. However, activation of either $GABA_A$ or $GABA_B$ receptor equally suppressed spontaneous firing in the soma, whereas $GABA_B$ receptor inhibited spontaneous firing more strongly than $GABA_A$ receptor in the proximal and distal dendrites. These regional differences of GABA signals between the soma and dendritic compartments could contribute to our understanding of many diverse and complex actions of GABA in midbrain DA neurons.

Development of Melanotropin Antagonists: Investigating Potent and Specific Ligands for New Receptors

  • Lim, Sejin
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1996년도 제4회 추계심포지움
    • /
    • pp.153-159
    • /
    • 1996
  • ${\alpha}$-Melanotropin (Ac-Ser-Tyr- Ser-Met-Glu$\^$5/-His-Phe-Arg-Trp-Gly$\^$10/-Lys-Pro-Val-NH$_2$) is one of the first peptide hormones to be isolated and have its structure determined. It was early recognized to have essentially the same N-terminal tridecapeptide sequence as adrenocorticotropic hormone (ACTH) except that the N-terminal was acetylated in the case of ${\alpha}$-MSH but not in the case of ACTH, indicating that their biosyntheses were different (Figure 1). Subsequently it was discovered that ${\alpha}$-MSH and ACTH were derived from the same gene, currently referred to as proopiomelanocortin (POMC). Its original bioactivity was pigmentation, but it also was recognized that it may have activity in the central nervous system, though the precise nature of these central activities have been controversial. The recent cloning and expression of five melanocortin receptors, with the MC3 and MC4 receptors found primarily in the brain and the MC5 receptor (MC5-R) found throughout the body, has provided new impetus to understand the structure-activity relationships of ${\alpha}$-MSH at these receptors. The effects of ${\alpha}$-MSH on pigmentation are mediated by the MC1-R expressed specifically on the surface of melanocytes. Similarly the MC2-R is involved in the regulation of adrenal steroidogenesis by ACTH. However, given the complexity of expression of the MC3, MC4, and MC5 receptors, it has not been possible to identify any simple correlations between these receptors and the reported biological activities of the melanocortin peptides. Consequently, potent and receptor specific agonists and especially antagonists would be extremely valuable tools for the determination of the physiological roles of the MC3, MC4, and MC5 receptors. Though the extensive structure-activity relationships have provided much information on agonist activity related to pigmentary effects, only recently has it been possible to begin to systematically develop potent and selective antagonists.

  • PDF