• Title/Summary/Keyword: receiving phase

Search Result 264, Processing Time 0.026 seconds

Removal study of As (V), Pb (II), and Cd (II) metal ions from aqueous solution by emulsion liquid membrane

  • Dohare, Rajeev K.;Agarwal, Vishal;Choudhary, Naresh K.;Imdad, Sameer;Singh, Kailash;Agarwal, Madhu
    • Membrane and Water Treatment
    • /
    • v.13 no.4
    • /
    • pp.201-208
    • /
    • 2022
  • Emulsion Liquid Membrane (ELM) is a prominent technique for the separation of heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of the components (Surfactant and Carrier) of ELM is a very significant step for its preparation. In the ELM technique, the primary water- in-oil (W/O) emulsion is emulsified in water to produce water-in-oil-in-water (W/O/W) emulsion. The water in oil emulsion was prepared by mixing the membrane phase and internal phase. To prepare the membrane phase, the extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2- ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II). Emulsion Liquid Membrane (ELM) is a well-known technique for separating heavy metal ions from wastewater due to the fast extraction and is a single-stage operation of stripping-extraction. The selection of ELM components (Surfactant and Carrier) is a very significant step in its preparation. In the ELM technique, the primary water-in-oil (W/O) emulsion is emulsified to produce water-in-oil-in-water (W/O/W) emulsion. The water in the oil emulsion was prepared by mixing the membrane and internal phases. The extractant D2EHPA (di-2-ethylhexylphosphoric acid) was used as a mobile carrier, Span-80 as a surfactant, and Paraffin as a diluent. Moreover, the internal (receiving) phase was prepared by dissolving sulphuric acid in water. Di-(2-ethylhexyl) phosphoric acid such as surfactant concentration, carrier concentration, sulphuric acid concentration in the receiving (internal) phase, agitation time (emulsion phase and feed phase), the volume ratio of the membrane phase to the receiving phase, the volume ratio of the external feed phase to the primary water-in-oil emulsion and pH of feed were studied on the percentage extraction of metal ions at 20℃. The results show that it is possible to remove 78% for As(V), 98% for Cd(II), and 99% for Pb(II).

Recovery of Golden yellow and Cibacron LSG dyes from aqueous solution by bulk liquid membrane technique

  • Muthuraman, G;Ali, P. Jahfar
    • Membrane and Water Treatment
    • /
    • v.3 no.4
    • /
    • pp.243-252
    • /
    • 2012
  • Tri-n-butyl phosphate (TBP) was used as carrier for the transport of Golden yellow and Cibacron LSG dyes through a hexane bulk liquid membrane. The transport efficiency of dyes by TBP was investigated under various experimental conditions such as pH of the feed phase (dyes solution), concentration of the receiving phase (NaOH solution), concentration of TBP in membrane, rate of stirring, effect of transport time, type of solvent, dye concentration in feed phase, effect of temperature.. The maximum transport dyes occurs at ratio of 1:1 TBP-hexane At pH 3.0 0.1 (feed phase) the transport dyes decreased. At high stirring speed (300 rpm) the dyes transport from the feed phase to the strip phase was completed within 60 minutes at $27^{\circ}C$. Under optimum conditions: Feed phase 100 mg/L dyes solution at pH 1.0 0.1, receiving phase 0.1 mol/L NaOH solution, membrane phase 1:1 TBP-hexane , Stirring speed 300 rpm and temperature $27^{\circ}C$, the proposed liquid membrane was applied to recover the textile effluent.

Separation and Recovery of Heavy Metal Ion using Liquid Membrane (액체막법에 의한 중금속이온의 분리 및 회수)

  • Jo, Mun Hwan;Jeong, Hak Jin;Lee, Sang In;Kim, Jin Ho;Kim, Si Jung
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.122-128
    • /
    • 1994
  • Macrocyclic ligand has been known to selectively bind with metal ions so that ability applied for the transport of metal ions across the emulsion liquid membrane in this study. The metal ions are transproted from the source phase to the receiving phase by the carrier of the organic phase. Several factors involved in the transport of metal ions acrose the emulsion membrane we reported here and these factors provided the informations for the selective seperation of some metal ion. Stability constants for cation-macrocyclic ligand and metal ion-anion receiving phase interaction are examined as parameters for the prediction of metal ion transport selectivities. $Pb^{2+}$ was transported higher rates than the other metal ions in the mixture solution. The interaction of metal ion to anion in receiving phase is important. $S_2O_3^{2-}$- in replacement of $NO_3^-$ in the receiving phase enhances the transport of $Pb^{2-}$since $Pb^{2-}-S_2O_3^{2-}$interaction is greater than $Pb^{2+}-NO_3^-$ interaction.

  • PDF

Analysis of Laser-protection Performance of Asymmetric-phase-mask Wavefront-coding Imaging Systems

  • Yangliang, Li;Qing, Ye;Lei, Wang;Hao, Zhang;Yunlong, Wu;Xian'an, Dou;Xiaoquan, Sun
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.1-14
    • /
    • 2023
  • Wavefront-coding imaging can achieve high-quality imaging along with a wide range of defocus. In this paper, the anti-laser detection and damage performance of wavefront-coding imaging systems using different asymmetric phase masks are studied, through modeling and simulation. Based on FresnelKirchhoff diffraction theory, the laser-propagation model of the wavefront-coding imaging system is established. The model uses defocus distance rather than wave aberration to characterize the degree of defocus of an imaging system. Then, based on a given defocus range, an optimization method based on Fisher information is used to determine the optimal phase-mask parameters. Finally, the anti-laser detection and damage performance of asymmetric phase masks at different defocus distances and propagation distances are simulated and analyzed. When studying the influence of defocus distance, compared to conventional imaging, the maximum single-pixel receiving power and echo-detection receiving power of asymmetric phase masks are reduced by about one and two orders of magnitude respectively. When exploring the influence of propagation distance, the maximum single-pixel receiving power of asymmetric phase masks decreases by about one order of magnitude and remains stable, and the echodetection receiving power gradually decreases with increasing propagation distance, until it approaches zero.

The Conceptual Structure of Coping -Based on Patients receiving Hemodialysis - (대처(coping)의 개념적 구조 -혈액투석환자를 대상으로-)

  • Chang Sung-Ok;Lee Sook-Ja;Kim Jung-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.7 no.1
    • /
    • pp.42-59
    • /
    • 2000
  • This study was done to analyze and develop the concept of coping in patients receiving hemodialysis. The Hybrid Model of concept development was applied to develop a conceptual structure of coping in patients receiving hemodialysis, which included a field study carried out using an in-dept interview with 18 patients in the hemodialysis room of one general hospital in Seoul. Data-analysis was done in three phases as suggested by the Hybrid Model. Finally, by summarizing the results from each case, the attributes of coping, its dimensions, definition and structure were outlined. According to the results of the study, a conceptual structure of coping which centers around stressors, stress-appraisal, strategy of coping and new definitions of coping in patients receiving hemodialysis was suggested : The coping of patients receiving hemodialysis is a process that deals with physical, emotional, inter-personal, and role stress caused by hemodialysis due to renal failure. It has a series of phases which include a phase that appraises the stressful situation based on past experience of chronic disease management, one's remaining rears, the extent of family support, the extent of economic dependency, inter-personal support. education and uncertainty, and a phase of developing coping strategies that con be affected by social support and self esteem. As a result of coping, patients adapt or not to the life situation of receiving hemodialysis.

  • PDF

Phase Offset Enumeration Method with Error Detection and Its Application to Synchronization of PN Sequences

  • Song Young-Joan
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.26-30
    • /
    • 2005
  • It is important to know phase offsets of PN(Pseudo Noise) sequences in spread spectrum communications since the acquisition is equivalent to making a phase offset between a receiving PN sequence and a PN sequence of local PN generator be identical. In this paper, a phase offset enumeration method for PN sequences with error detection, and its application to the synchronization are proposed. The phase offset enumeration for an n-tuple PN sequence and its error detection are performed when one period of the sequence is received. Once the phase offset of the receiving sequence is calculated, we can easily accomplish the synchronization by initializing shift registers of a local PN generator according to the phase offset value. The mean acquisition time performance of the proposed scheme was derived analytically. Since this synchronization scheme can be realized by using simple circuit and acquires very rapid acquisition in high SNR but shows performance degradation in low SNR, it can be especially useful in indoor and office environments.

Effects of Trace Mineral Supplementation and Source, 30 Days Post-weaning and 28 Days Post Receiving, on Performance and Health of Feeder Cattle

  • Dorton, K.L.;Engle, T.E.;Enns, R.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.10
    • /
    • pp.1450-1454
    • /
    • 2006
  • Three hundred and seventy-five steers (approximately 7 mo of age and $239.0{\pm}10.4kg$) were utilized to determine the effects of trace mineral (TM) supplementation and source on performance during the on-farm backgrounding and feedlot receiving phases of beef cattle production. At their respective ranches, steers were stratified by body weight into six groups. Groups were then assigned to one of six pens and pens were randomly assigned to treatments. Treatments consisted of: 1) control (no supplemental Cu, Zn, Mn, and Co), 2) inorganic trace mineral ($CuSO_4$, $ZnSO_4$, $MnSO_4$, and $CoCO_3$), and 3) organic trace mineral (iso-amounts of organic Cu, Zn, Mn, and Co). Mineral treatments were fed in alfalfa pellets formulated to supply 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12.5 mg of Co per head per day from either organic or inorganic trace mineral sources. Control steers received alfalfa pellets with no additional Cu, Zn, Mn, or Co. Steers were allowed free access to harvested alfalfa-grass hay throughout the 30-d on-farm backgrounding phase. On day 30 post-weaning, steers were weighed and transported to the feedlot. Steers were blocked by treatment within ranch, stratified by initial body weight, and randomly assigned to one of 36 pens (9-12 head per pen; 12 pens per treatment). Steers remained on the same on-farm backgrounding trace mineral treatments, however, trace mineral treatments were included in the total mixed growing ration. Steers were fed a corn silage-based growing diet throughout the 28 d feedlot receiving period. There was no effect of TM supplementation on performance of steers during the on-farm backgrounding phase. By the end of the 28-d feedlot receiving phase, ADG was similar between control and trace mineral supplemented steers. Steers supplemented with organic TM had greater (p<0.05) ADG than steers supplemented with inorganic TM by the end of the 28-d feedlot receiving phase. Morbidity and mortality rates were similar across treatments.

Procedure of Seismic Performance Evaluation of LNG Receiving Terminal Facilities (천연가스 생산기지 시설물의 내진성능평가 절차)

  • Lee, Tae-Hyung;Lee, Eunsuk;Park, Taekyu;Hong, Seong Kyeong;Kim, Joonho
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.110-115
    • /
    • 2014
  • It is crucial for important facilities to withstand strong earthquakes because their damage may cause undesirable socio-economic effect. A liquefied natural gas (LNG) receiving terminal is one of the lifeline facilities whose seismic safety needs to be guaranteed. Even though all operating LNG receiving terminals in Korea were seismically designed, old design codes do not guarantee to comply with the current seismic design codes. In addition, if the constructional materials have been deteriorated, the seismic capacity of facilities may be also deteriorated. Therefore, it is necessary that the seismic performance of LNG receiving terminals is evaluated and the facilities that lack of seismic capacity have to be rehabilitated. In this paper, a procedure of seismic performance evaluation of such facilities is developed such that the procedure consists of three phases, namely pre-analysis, analysis, and evaluation phases. In the pre-analysis phase, design documents are reviewed and walk-on inspection is performed to determine the current state of the material properties. In the analysis phase, a structural analysis under a given earthquake or a seismic effect is performed to determine the seismic response of the structure. In the evaluation phase, seismic performance of the structure is evaluated based on limit states. Two of the important facilities, i.e. the submerged combustion vaporizer (SMV) and pipe racks of one of the Korean LNG receiving terminals are selected and evaluated according to the developed procedure. Both of the facilities are safe under the design level earthquake.

Transport of Metal Ions Across Bulk Liquid Membrane by Lipophilic Acyclic Polyether Dicarboxylic Acids (Lipophilic Acyclic Polyether Dicarboxylic Acid 에 의한 액체막을 통한 금속이온의 이동)

  • Jo, Mun Hwan;Jo, Seong Ho;Lee, In Jong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.2
    • /
    • pp.129-135
    • /
    • 1994
  • Acyclic polyether dicarboxylic acid have been studied as metal cation carriers in a bulk liquid membrane system. The proton-ionizable ligands feature allows the coupling of a cation transport to reverse proton transport. This feature offers promise for the effective separation and concentration of metal cations with the metal cation transport being driven by a pH gradient. Metal cation transport increased regularly with increasing hydroxide($H^-$) concentration of source phase and with proton($H^+$) concentration of receiving phase. Competitive transport by the acyclic polyether dicarboxylic acids is selective for calcium ion over other alkaline-earth cations.

  • PDF

Separation of a Sugar Mixture by Emulsion Liquid Membranes (에멀젼형 액막법에 의한 당 혼합물의 분리)

  • Lee, Sang Cheol
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.380-386
    • /
    • 2005
  • Separation of fructose and glucose was performed using emulsion liquid membranes with a mixture of an organoboronic acid and a quaternary ammonium salt as a carrier in a batch reactor. In order to find a carrier and an optimal experimental condition suitable to the sugar separation, extraction of each sugar was carried out independently. The effect of various experimental variables, such as initial concentration of sugar in the feed phase, type of organoboronic acids, and w/o ratio, on the sugar separation was investigated, and the concentrations of sugars in each aqueous phase were analyzed. The ratio of degree of extraction of fructose to that of glucose was very high, but the concentration of fructose in the receiving phase was not too high. Therefore, a stronger stripping agent in the receiving phase was required for development of a practical ELM system suitable to the sugar separation.