• Title/Summary/Keyword: recN

Search Result 52, Processing Time 0.017 seconds

Effect of Thresher Drum-Speed on the Quality of the Milled Rice (탈곡기의 급동 속도가 도정 손실에 미치는 영향)

  • Chung, Chang Joo;Koh, Hak Kyun;Lee, Chong Ho;Kang, Hwa Seug
    • Journal of Biosystems Engineering
    • /
    • v.4 no.2
    • /
    • pp.9-9
    • /
    • 1979
  • It is understood that drum speed of threshers and the moisture content of paddy grains to be threshed, respectively, have a signific:mt effect upon rice recoveries. Threshing under an increased drum speed would give a high performance rate, which is the general practice in custom work threshing in association with the use of semiauto-t hreshers. In the connection, however, it may result in the promotion of grain cracks and brokens of the rice product after milling. No reference or determination for an opti mum drum speed of the thresher is made available for various grain moisture contents at the time of the threshing operation and for different rice varieties especially for the Tongil rice varieties. This study was Conducted to find out and determine effects of the drum speeds on grain losses. The grain loss was quantified in terms of recovery rates of rice grains after treatments. Samples of each of all treatments were taken from the grain sampling plate placed in the grain conveyor of threshers. The grain sample plate was specially provided for this experiment. The brown-rice, milling, and head-rice recJveries were tes ted in the laboratory mill, respectively. Two rice varieties, Akibare and Suweon 251, each with five levels of different moist?ure contents at harvest and six levels of different drum speeds of threshers, were selected and used for treatments in this experiment. Two conditions of materials were tested in the thresher. One condition was to thresh the experimental material immediately after cutting, referred to as the wet-material thr eshing in this study. The other was to thresh the experimental :material, dried to contain about 15-16 percent of the grain moisture under the shocking operation. This is referred to as the dry-material threshing in this study. In additioon, field measurements for the grain moistures and drum-sdeeds under actual operation practices of the traditional field threshing, were conducted with a view to comparing with results of the experimental treatments. The results of the study may be summarized as follows: 1. For threshing treatments of Japonica-type rice variety (Akibare) , the effect of drum speeds and levels of grain moisture at cutting upon brown-rice, milling, and head-rice recoveries were found statistically significant. No significant difference in these recovery rates was noticed regardless of whether the material was threshed right after cutting or after drying by the shocking operation. 2. For the Tongil-sister rice variety(Suweon 251), milling recovery for the varied drum-speed and the grain~moisture level at cutting was found statististically significant. Th milling recovery was much significant when associated with the wet-material thres?hing compared to the dry-material threshing. 3. The optimum peripheral velocity to be maintained at the edge of teeth on the thr?esher drum was determined and may be recommanded as that of about 12 to 13 meters per second in view of the maximum recovery rate of the milled rice. 4. The effect of the drum speed on the qualitative loss of the milled rice was much greater in the case of the Tongil variety than Japonica. This effect was also greater by the wet-material threshing than by the dry-material threshing. Therefore, to apply the wet-material threshing operation for the Tongil variety, in particular, it should be very important to introduce the kind of threshing technology which would maintain the drum speed at optimum. 5. A field survey for the actual drum speed of threshing operations for 50 threshers indicated that average peripheral velccity was 12.76m/sec., and that the range was from 10.50 to 14.90m/sec. Approximately, more than 30% of the experimented and measured threshers were being operated at speeds which exceeded the optimum speed determined and assessed in this study. Accordingly, it should be highly desirable and important to take counter-measures against these threshing practices of operational overspeed.

Viabilities of Biopsied Mouse Embryos after Ultrarapid Refreezing and Thawing (미세조작된 생쥐수정란의 초급속 재동결융해 후 생존성)

  • 신상태;임준호;강만종;한용만;이경광
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.2
    • /
    • pp.207-214
    • /
    • 1996
  • To examine the developmental capacity of manipulated embryos after ultrarapid refreezing and thawing, mouse embryos were biopsied at 4-cell stage, frozen twice at 4-cell and morula stages, respectively, and then transferred to rec-ipients. Single blastomeres were biopsied from 4-cell embryos by a modified aspiration method. Biopsied 4-cell embryos were equilibrated into freezing medium at room temperature for 2.5 min, loaded into 40 $\mu$I of freezing medium in 0.25 ml plastic straw and then directly immersed into liqiud nitrogen. Freezing medium for 4-cell embryos consisted of 4.0 M ethylene glycol and O.25 M sucrose in dPBS supplemented with 6 mg/lm BSA. Morulae were frozen into freezing medium containing 5.0 M glycerol instead of ethylene glycol. Thawing was conducted by agitating each straw in 3TC water for 20 sec. The c content of each straw was expelled into 0.5 ml of dilution medium, which consisted of 0.25 M sucrose and 3 mg/ml BSA in dPBS. The thawed embryos were rehydrated in dilution medium for 10 min, washed 3 times with dPBS and then cultured in M16 medium at 37$^{\circ}C$, 5% CO$_2$ in air. Blastocysts that developed from frozen or refrozne biopsied embryos were transferred to recipients on Day 3 of pseudopregnancy, respectively. In vitro and in vivo developmental rates of the biopsied and intact 4~cell embryos after freezing and thawing were 78 (10l/130) and 25% (10/40), and 91 (114/125) and 30% (12/40), respectively. Although the rates of in vitro development of biopsied and intact embryos to blastocyst stage were significantly different after freezing and thawing (P

  • PDF