• Title/Summary/Keyword: reasons of drug residues

Search Result 3, Processing Time 0.02 seconds

The reasons of drug residues in bulk milk (원유내 약물잔류의 원인에 관한 연구)

  • Kang, Jeong-hun;Kim, Jin-suk;Choi, Pill-su;Lee, Won-chang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.6
    • /
    • pp.1180-1186
    • /
    • 1999
  • The 102 farms received a positive result of the bulk milk drug residue test were selected to investigate the reasons of drug residues in bulls milk. The most frequent causes of drug residues were milker or producer mistakes (28.4%), failure to observe withdrawal time (21.5%), and withholding milk from treated quarters only (19.6%). Milker or producer mistakes occurred high at the farms having a parlor system (4 cases out of 11 farms), and related to the inadequate records and marking of treated cows. The lack of knowledge on the absorption of antibiotic from treated quarters and its excretion from untreated quarters caused mainly withholding milk from treated quarters only. Among the 91 farms identified the cause of drug residues, most of the route of drug administration was intramammary infusion (81.3%), and mostly drug used for the treatment of cows was ${\beta}$-lactam antibiotic (57.1%)

  • PDF

Investigation of the Binding Site of CCR2 using 4-Azetidinyl-1-aryl-cyclohexane Derivatives: A Membrane Modeling and Molecular Dynamics Study

  • Kothandan, Gugan;Gadhe, Changdev G.;Cho, Seung Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3429-3443
    • /
    • 2013
  • Chemokine receptor (CCR2) is a G protein-coupled receptor that contains seven transmembrane helices. Recent pharmaceutical research has focused on the antagonism of CCR2 and candidate drugs are currently undergoing clinical studies for the treatment of diseases like arthritis, multiple sclerosis, and type 2 diabetes. In this study, we analyzed the time dependent behavior of CCR2 docked with a potent 4-azetidinyl-1-aryl-cyclohexane (4AAC) derivative using molecular dynamics simulations (MDS) for 20 nanoseconds (ns). Homology modeling of CCR2 was performed and the 4AAC derivative was docked into this binding site. The docked model of selected conformations was then utilized to study the dynamic behavior of the 4AAC enzyme complexes inside lipid membrane. MDS of CCR2-16b of 4AAC complexes allowed us to refine the system since binding of an inhibitor to a receptor is a dynamic process and identify stable structures and better binding modes. Structure activity relationships (SAR) for 4AAC derivatives were investigated and reasons for the activities were determined. Probable binding pose for some CCR2 antagonists were determined from the perspectives of binding site. Initial modeling showed that Tyr49, Trp98, Ser101, Glu291, and additional residues are crucial for 4AAC binding, but MDS analysis showed that Ser101 may not be vital. 4AAC moved away from Ser101 and the hydrogen bonding between 4AAC and Ser101 vanished. The results of this study provide useful information regarding the structure-based drug design of CCR2 antagonists and additionally suggest key residues for further study by mutagenesis.

Recent Progress in Development of Vaccines against Avian Coccidiosis (조류 콕시듐증의 백신개발에 대한 최근의 진보)

  • Lillehoj, Hyun S.
    • Korean Journal of Poultry Science
    • /
    • v.26 no.3
    • /
    • pp.149-170
    • /
    • 1999
  • Protozoa of the genus Eimeria are the etiologic agents of avian coccidiosis, the most economically important Parasitic disease for the poultry industry. Coccidia multiply in intestinal epithelial cells of a wide range of hosts, including livestock in addition to poultry. Chemotherapy is extensively used to control coccidiosis. However, development of drug resistance by Eimeria parasites, the intensive cost and labor involved in the identification of new anticoccidial compounds and public awareness of drug residues in foods warrant alternative methods to prevent coccidiocic in the fast growing poultry industry. For these reasons, there is a great interest in developing vaccines against avian coccidiosis. Live Eimeria vaccines confer protective immunity, however a significant disadvantage of using these types of vaccines is their pathogenicity. Live parasites with attenuated pathogenicity also usually produce immunity but may revert back to a pathogenic form and may be contaminated with other pathogenic organisms. Killed Eimeria vaccines are safer but, unlike live attenuated vaccines, are not able to generate cytotoxic T lymphocyte responses. Recombinant vaccines are biochemically purified proteins produced by genetic engineering that consist of particular epitopes or metabolites of Eimeria. Unlike live attenuated organisms, recombinant vaccines do not possess as much risk and generally are able to induce both humoral and cell mediated immunity. DNA vaccines consist of genes encoding immunogenic proteins of pathogens that are directly administered into the host in a manner that the gene is expressed and the resulting protein generates a protective immune response. Although all of these different types of vaccines have been applied to coccidiosis, this disease continues to cause substantial morbidity and mortality in the poultry industry. Future development of an effective vaccine against coccidiosis will depend on further investigation of protective immunity to Eimeria infection and identification of important immundgenic parasite molecules.

  • PDF