The effects of the betterment of enforced intellectual property rights (IPRs) provisions on services export diversification are investigated. The analysis used an unbalanced panel dataset of 76 developing countries over the period of 1970-2014. The empirical analysis is based on the feasible generalized least squares estimator. It suggests that the implementation of weaker IPR protection fosters services export diversification in less developed countries (i.e., those whose real per capita incomes are less than US$US$ 1458.60), including those with a low level of export product upgrading. Conversely, in relatively advanced developing countries (countries whose real per capita income exceeds US$ 3356.80), including those with high levels of export product upgrading, the implementation of stronger IPR laws induces greater services export diversification. Finally, the analysis revealed the existence of a non-linear relationship between IPR protection and services export diversification. The implementation of stronger intellectual property laws spurs services export diversification in countries with high degree of IPR protection, especially when IPR protection exceeds a certain level, recorded here as having a score of 1.197. In contrast, in countries with weaker IPR protection, in particular those with IPR protection levels that score less than 0.915, it is rather the implementation of weaker intellectual property laws that promotes services export diversification.
최근 범죄 예방을 위해 폭력행위 검출에 대한 영상 분석 기술에 대한 요구가 증가되고 있다. 영상을 이용한 행동 인식 기술을 많은 연구되고 있지만, 폭력행위에 대한 검출 기술은 상대적으로 텔레비전 또는 영화의 폭력장면 검출에만 초점이 맞추어져 있다. 영화에서 촬영 된 폭력 장면에는 주로 피를 흘리는 모습들이 자주 등장하기 때문에 움직임 정보와 색상 정보를 함께 사용하는 방법을 많이 사용하였다. 하지만 실제 CCTV에서 촬영된 폭력행위의 경우 피가 묻은 장면은 자주 발생하지 않기 때문에 색상 정보를 이용한 폭력행위 검출에는 한계점이 존재한다. 본 논문에서는 영상에서의 움직임 벡터를 이용하여 감시영상에서의 폭력 행동을 검출하는 알고리즘을 제안하고자 한다. 제안하는 방법은 공개 데이터인 USI 데이터와 실제 폭력 행위가 발생한 YouTube 데이터를 사용하여 검출결과를 나타내었다.
최근 들어 모바일 디바이스와 GPS(Global Positioning System)의 발전으로 다양한 위치 기반 서비스(Location-Based Servises, LBS)를 활용할 수 있게 되었다. LBS 사용자는 서비스를 이용하기 위해 자신의 위치 정보를 서비스 제공자에게 노출한다. 이 과정에서 개인의 민감한 정보를 침해할 가능성이 있으므로 사용자의 위치 데이터를 변조하여 프라이버시를 보존할 수 있는 Geo-indistinguishability(Geo-Ind) 기법이 많이 활용되고 있다. 그러나 Geo-Ind 기법으로 인하여 사용자로부터 변조된 데이터를 수집하는 경우, LBS 제공자는 사용자 분포에 대한 정확한 정보를 얻을 수 없다. 그러므로 본 논문에서는 Geo-Ind 기법을 이용하여 사용자로부터 수집한 변조된 위치 데이터로부터 사용자 분포에 대한 정보를 정확하게 계산하기 위한 방법을 제안한다. 특히, Expectation-Maximization(EM) 기법을 이용하여 변조된 데이터로부터 사용자의 위치 분포를 정확하게 예측하기 위한 기법을 제안한다. 또한 실제 데이터를 이용해 제안 기법의 우수성을 입증한다.
생성형 AI는 최근 모든 분야에서 활용되고 있으며, 심층 데이터 분석 분야에서도 전문가를 대체할 수준으로 발전하고 있다. 그러나 과학기술 문헌에서의 지역명 식별은 학습 데이터의 부족과 이에 따른 인공지능 모델을 적용한 사례가 전무한 실정이다. 본 연구는 Web of Science에서 한국 기관 소속 저자들의 주소 데이터를 활용해 지역명을 분류하기 위한 데이터셋을 구축하고, 머신러닝 및 딥러닝 모델의 적용을 실험 및 평가했다. 실험 결과 BERT 모델이 가장 우수한 성능을 보였으며, 광역 분류에서는 정밀도 98.41%, 재현율 98.2%, F1 점수 98.31%를 기록하였다. 시군구 분류에서는 정밀도 91.79%, 재현율 88.32%, F1 점수 89.54%를 달성하였다. 이 결과는 향후 지역 R&D 현황, 지역 간 연구자 이동성, 지역 공동 연구 등 다양한 연구의 기반 데이터로 활용이 가능하다.
트랜스포머 모델의 핵심 요소인 토크나이저는 숫자 형태의 데이터를 제대로 이해하지 못한다. 따라서 패킷 페이로드를 문장처럼 학습하여 실제 네트워크에서 동작 가능한 트랜스포머 기반의 침입탐지 모델을 구축하기 위해서는 16진수 형태의 패킷 페이로드를 문자 형태로 변환하는 것이 필요하다. 이러한 문제 인식 하에 본 연구에서는 3종의 문자 인코딩 방식을 적용하여 패킷 페이로드를 숫자 및 문자 형태로 변환한 후 트랜스포머 모델에 학습시키면서 모델의 탐지성능이 어떻게 달라지는지를 분석하였다. 성능 분석 실험을 위한 데이터세트는 UNSW-NB15 데이터세트에 포함된 PCAP 파일에서 패킷 페이로드를 추출하여 구성하였으며, 학습 모델은 RoBERTa를 사용하였다. 실험 결과, ISO-8859-1 인코딩이 이진분류 및 다중분류에서 가장 우수한 성능을 달성하는 것으로 확인되었으며, 토큰의 수를 512개로 설정하고 최대 에포크를 15회로 증가한 경우에 다중분류 정확도가 88.77%까지 향상되었다.
International journal of advanced smart convergence
/
제11권1호
/
pp.19-27
/
2022
Across the world, 'housing' comprises a significant portion of wealth and assets. For this reason, fluctuations in real estate prices are highly sensitive issues to individual households. In Korea, housing prices have steadily increased over the years, and thus many Koreans view the real estate market as an effective channel for their investments. However, if one purchases a real estate property for the purpose of investing, then there are several risks involved when prices begin to fluctuate. The purpose of this study is to design a real estate price 'return rate' prediction model to help mitigate the risks involved with real estate investments and promote reasonable real estate purchases. Various approaches are explored to develop a model capable of predicting real estate prices based on an understanding of the immovability of the real estate market. This study employs the LSTM method, which is based on artificial intelligence and deep learning, to predict real estate prices and validate the model. LSTM networks are based on recurrent neural networks (RNN) but add cell states (which act as a type of conveyer belt) to the hidden states. LSTM networks are able to obtain cell states and hidden states in a recursive manner. Data on the actual trading prices of apartments in autonomous districts between January 2006 and December 2019 are collected from the Actual Trading Price Disclosure System of the Ministry of Land, Infrastructure and Transport (MOLIT). Additionally, basic data on apartments and commercial buildings are collected from the Public Data Portal and Seoul Metropolitan Government's data portal. The collected actual trading price data are scaled to monthly average trading amounts, and each data entry is pre-processed according to address to produce 168 data entries. An LSTM model for return rate prediction is prepared based on a time series dataset where the training period is set as April 2015~August 2017 (29 months), the validation period is set as September 2017~September 2018 (13 months), and the test period is set as December 2018~December 2019 (13 months). The results of the return rate prediction study are as follows. First, the model achieved a prediction similarity level of almost 76%. After collecting time series data and preparing the final prediction model, it was confirmed that 76% of models could be achieved. All in all, the results demonstrate the reliability of the LSTM-based model for return rate prediction.
Zhai, Guanghao;Narazaki, Yasutaka;Wang, Shuo;Shajihan, Shaik Althaf V.;Spencer, Billie F. Jr.
Smart Structures and Systems
/
제29권1호
/
pp.237-250
/
2022
Structural health monitoring (SHM) plays an important role in ensuring the safety and functionality of critical civil infrastructure. In recent years, numerous researchers have conducted studies to develop computer vision and machine learning techniques for SHM purposes, offering the potential to reduce the laborious nature and improve the effectiveness of field inspections. However, high-quality vision data from various types of damaged structures is relatively difficult to obtain, because of the rare occurrence of damaged structures. The lack of data is particularly acute for fatigue crack in steel bridge girder. As a result, the lack of data for training purposes is one of the main issues that hinders wider application of these powerful techniques for SHM. To address this problem, the use of synthetic data is proposed in this article to augment real-world datasets used for training neural networks that can identify fatigue cracks in steel structures. First, random textures representing the surface of steel structures with fatigue cracks are created and mapped onto a 3D graphics model. Subsequently, this model is used to generate synthetic images for various lighting conditions and camera angles. A fully convolutional network is then trained for two cases: (1) using only real-word data, and (2) using both synthetic and real-word data. By employing synthetic data augmentation in the training process, the crack identification performance of the neural network for the test dataset is seen to improve from 35% to 40% and 49% to 62% for intersection over union (IoU) and precision, respectively, demonstrating the efficacy of the proposed approach.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권2호
/
pp.775-792
/
2015
Person re-identification is an important and challenging task in computer vision with numerous real world applications. Despite significant progress has been made in the past few years, person re-identification remains an unsolved problem. This paper presents a novel appearance-based approach to person re-identification. The approach exploits region covariance matrix and color histograms to capture the statistical properties and chromatic information of each object. Robustness against low resolution, viewpoint changes and pose variations is achieved by a novel signature, that is, the combination of Log Covariance Matrix feature and HSV histogram (LCMH). In order to further improve re-identification performance, third-party image sets are utilized as a common reference to sufficiently represent any image set with the same type. Distinctive and reliable features for a given image set are extracted through decision boundary between the specific set and a third-party image set supervised by max-margin criteria. This method enables the usage of an existing dataset to represent new image data without time-consuming data collection and annotation. Comparisons with state-of-the-art methods carried out on benchmark datasets demonstrate promising performance of our method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권7호
/
pp.1252-1273
/
2011
In Web Service Composition (WSC) area, services selection aims at selecting an appropriate candidate from a set of functionally-equivalent services to execute the function of each task in an abstract WSC according to their different QoS values. In despite of many related works, few of previous studies consider transactional constraints in QoS-aware WSC, which guarantee reliable execution of Composite Web Service (CWS) that is composed by a number of unpredictable web services. In this paper, we propose a novel global selection-optimal approach in WSC by considering both transactional constraints and end-to-end QoS constraints. With this approach, we firstly identify building rules and the reduction method to build layer-based Directed Acyclic Graph (DAG) model which can model transactional relationships among candidate services. As such, the problem of solving global optimal QoS utility with transactional constraints in WSC can be regarded as a problem of solving single-source shortest path in DAG. After that, we present Graph-building algorithms and an optimal selection algorithm to explain the specific execution procedures. Finally, comprehensive experiments are conducted based on a real-world web service QoS dataset. The experimental results show that our approach has better performance over other competing selection approaches on success ratio and efficiency.
Although digit character recognition has got a significant improvement in recent years, it is still challenging to achieve satisfied result if the data contains an amount of distracting factors. This paper proposes a novel digit character recognition approach using a multi-layer hierarchical model, Hybrid Restricted Boltzmann Machines (HRBMs), which allows the learning architecture to be robust to background distracting factors. The insight behind the proposed model is that useful high-level features appear more frequently than distracting factors during learning, thus the high-level features can be decompose into hybrid hierarchical structures by using only small label information. In order to extract robust and compact features, a stochastic 0-1 layer is employed, which enables the model's hidden nodes to independently capture the useful character features during training. Experiments on the variations of Mixed National Institute of Standards and Technology (MNIST) dataset show that improvements of the multi-layer hierarchical model can be achieved by the proposed method. Finally, the paper shows the proposed technique which is used in a real-world application, where it is able to identify digit characters under various complex background images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.