• 제목/요약/키워드: real-world dataset

검색결과 148건 처리시간 0.028초

단일 클래스 모델을 활용한 네트워크 침입 탐지 (Network Intrusion Detection Using One-Class Models)

  • 민병준;박대경
    • 융합보안논문지
    • /
    • 제24권3호
    • /
    • pp.13-21
    • /
    • 2024
  • 4차 산업혁명의 발전으로 네트워크가 급속히 확산되면서 사이버 보안 위협이 더욱 증가하고 있다. 기존의 시그니처 기반 네트워크 침입 탐지 시스템(NIDS)은 알려진 공격을 탐지하는 데 효과적이지만, APT와 같은 새로운 공격에는 한계가 있다. 또한, 지도 학습 기반 딥러닝 모델은 불균형 데이터 문제로 인해 정상 데이터에 편향된 결과를 낳을 위험이 있다. 이러한 문제를 해결하기 위해 본 논문은 정상 데이터만을 학습하여 비정상 데이터를 탐지하는 단일 클래스 모델 기반의 네트워크 침입 탐지 방법을 제안한다. DeepSVDD와 MemAE 모델을 활용해 NSL-KDD 데이터 셋에서 제안하는 방법의 효율성을 검증하며, 지도 학습 모델과의 비교를 통해 제안된 방법이 실제 네트워크 침입 탐지 문제에서 더욱 효과적임을 확인한다.

의약 용기의 다중 카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크 개발 (Development of a Deep Learning Network for Quality Inspection in a Multi-Camera Inline Inspection System for Pharmaceutical Containers)

  • 이태윤;윤석문;이승호
    • 전기전자학회논문지
    • /
    • 제28권3호
    • /
    • pp.474-478
    • /
    • 2024
  • 본 논문에서는 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크를 제안한다. 제안하는 딥러닝 네트워크는 현장에서 생산되는 의약 용기의 데이터를 사용하여 의약 용기에 특화된 딥러닝 네트워크로 더욱 정확하게 품질을 검사한다. 또한, 인라인 검사가 가능한 딥러닝 네트워크를 사용하여 품질 검사의 속도를 증대시킬 수 있다. 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 개발은 3단계로 나뉜다. 첫 번째로 실제 의약 용기 생산 현장에서 1개의 이물검사용 line 카메라, 3개의 치수검사용 area 카메라를 통해 얻은 약 10,000장의 이미지로 데이터셋을 구축한다. 두 번째로 의약 용기 데이터 전처리에서는 이물 검사, 치수검사의 용도에 맞게 불량이 일어날 수 있는 곳에 ROI를 지정하여 데이터를 전처리한다. 세 번째로 전처리된 데이터를 이용하여 딥러닝 네트워크를 학습한다. 딥러닝 네트워크는 적은 채널 수를 적용하여 linear layer를 사용하지 않아 판정 속도를 향상하고, PReLU와 residual learning를 적용하여 정확도를 향상한다. 이를 통해 4개의 카메라에서 구축한 데이터셋에 맞는 4개의 딥러닝 모듈을 제작한다. 제안된 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 성능을 평가하기 위하여 공인시험기관에서 실험한 결과는, 딥러닝 모듈의 판별 정확도가 99.4%로 세계 최고 수준인 95% 보다 우수한 성적을 달성하였고, 평균 판별 속도가 0.947초로 측정되어 세계 최고 수준인 1초보다 우수한 성적을 달성하였다. 따라서, 본 논문에서 제안한 의약 용기의 다중카메라 인라인 검사 시스템에서의 품질 검사를 위한 딥러닝 네트워크의 효용성이 입증되었다.

모바일 상황정보와 온라인 친구네트워크정보 기반 텐서 분해를 통한 오프라인 친구 추천 기법 (Offline Friend Recommendation using Mobile Context and Online Friend Network Information based on Tensor Factorization)

  • 김경민;김태훈;현순주
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권8호
    • /
    • pp.375-380
    • /
    • 2016
  • 스마트폰과 Online Social Network Service(OSNS)의 대중화를 통해 언제 어디서든 주변인뿐만 아니라 전 세계 사람들과 상호작용 할 수 있게 되었고, 그 결과 사람들의 OSNS 사용률은 계속 증가하고 있다. 그런데, 일부 OSNS를 통한 대인관계 형성에 집중하는 사람들의 경우, 수많은 Face-to-Face Interaction(F2F Interaction)을 통해 형성되는 인간관계의 과정을 "친구추천" 버튼 하나로 건너뜀으로써 대인관계 기술 발달 및 유지에 어려움을 겪을 수 있다. 본 논문에서는 오프라인에서 F2F Interaction 기회를 발견 및 제공할 수 있는 상황정보 기반의 친구추천 기법을 제시한다. 이를 위해 스마트폰 센서로부터 사용자의 상황정보와 Facebook에서 형성된 사용자 친구관계 정보를 수집하여 텐서 분해 및 결합을 기반으로 오프라인 환경에서 친구를 추천한다. 성능 평가를 위해 12명의 실험 참가자로부터 상황정보를 수집하고, 만족도를 평가하였다.

유전자 알고리즘을 이용한 서울시 군집화 최적 변수 선정 (Selection of Optimal Variables for Clustering of Seoul using Genetic Algorithm)

  • 김형진;정재훈;이정빈;김상민;허준
    • 대한공간정보학회지
    • /
    • 제22권4호
    • /
    • pp.175-181
    • /
    • 2014
  • 정부 3.0이라는 새로운 정부운영 계획과 함께 다양한 공공정보를 민간이 활용할 수 있게 되었으며, 특히 서울은 이러한 행정정보 공개 및 활용을 선도하고 있다. 공개된 행정정보를 통해 각 지역을 특징짓는 행정요소를 발견할 경우, 각종 행정정책을 위한 의사결정 수단에 반영할 수 있을 뿐만 아니라 특정 지역의 고객 특성을 파악하여 특화된 서비스나 상품을 판매하는 마케팅 수단으로도 사용할 수 있을 것으로 사료된다. 하지만, 방대한 양의 행정자료로부터 각 군집의 특성을 명확히 구분할 수 있는 최적의 조합을 찾는 과정은 조합최적화 문제로서 상당한 연산량을 요구한다. 본 연구에서는 서울시에서 제공하는 다차원 행정자료로부터 서울시를 대표하는 문화 산업의 중심인 서초구, 강남구, 송파구 등의 강남 3구를 다른 지역과 효과적으로 구분하는 행정요인를 찾고자 하였다. 방대한 양의 행정정보로부터 두 군집간의 차이점을 극대화하는 요인을 선별하기 위한 최적화 방법으로 유전자 알고리즘을 이용하였으며, 군집간 차이를 계산하는 척도로는 Dunn 지수를 이용하였다. 또한 유전자 알고리즘의 연산속도의 향상을 위해 Microsoft Azure에서 제공하는 cloud computing을 이용한 분산처리를 수행하였다. 자료로는 통계청으로 부터 취득한 총 718개의 행정자료를 이용하였으며, 그 중 28개가 최적 변수로 선정되었다. 검증을 위해 선정된 28개의 변수를 입력값으로 Ward의 최소분산법 및 K-means 알고리즘을 통한 군집화를 수행한 결과 두 경우 모두 강남 3구가 다른 지역으로부터 효과적으로 분류됨을 확인하였다.

생체신호를 활용한 학습기반 영유아 스트레스 상태 식별 모델 연구 (A Machine Learning Approach for Stress Status Identification of Early Childhood by Using Bio-Signals)

  • 전유미;한태성;김관호
    • 한국전자거래학회지
    • /
    • 제22권2호
    • /
    • pp.1-18
    • /
    • 2017
  • 오늘날 감정 표현이 서툰 영유아가 처한 극도의 스트레스 상태를 자동적으로 파악하는 것은 영유아의 안전을 위협하며 지속적으로 발생하는 위험 상황의 실시간적인 인지를 위해 반드시 필요한 기술이다. 따라서 본 논문에서는 생체신호를 활용하여 영유아의 스트레스 상태를 분류하기 위한 기계학습 기반의 모델과 생체신호 수집용 스마트 밴드 및 모니터링용 모바일 어플리케이션을 제안한다. 구체적으로 본 연구에서는 영유아의 감정을 나타내는 주요한 요인이 되는 음성 및 심박 데이터의 조합을 활용하여 기존에 널리 알려진 데이터 마이닝 기법을 통해 영유아의 스트레스 상태 패턴을 학습하고 예측한다. 본 연구를 통해 생체신호를 활용하여 영유아의 스트레스 상태 식별을 자동화할 수 있는 가능성을 확인하였으며 나아가서 궁극적으로 영유아의 위험 상황 예방에 활용될 수 있을 것으로 기대된다.

모티베이션 이론을 이용한 온라인 게임 내 부정행위 탐지 (Detecting malicious behaviors in MMORPG by applying motivation theory)

  • 이재혁;강성욱;김휘강
    • 한국게임학회 논문지
    • /
    • 제15권4호
    • /
    • pp.69-78
    • /
    • 2015
  • 온라인 게임 산업이 급격히 성장함에 따라 경제적 이득을 목적으로 한 악성 행위가 증가되고 있다. 본 논문에서는 온라인 게임 내 악성 행위 중 높은 비중을 차지하는 게임 봇 탐지를 위한 모티베이션 기반 ERG 이론을 적용한 탐지 방법을 제안한다. 기존에 연구된 행위 기반 탐지 기법들이 특정 행위들을 특성치로 선정하여 분석하였다면, 본 논문에서는 모티베이션 이론을 적용하여 행위 분석을 수행하였다. 실제 MMORPG의 데이터를 분석하여 본 결과, 온라인 게임 내에서도 정상 사용자는 실제 세계와 마찬가지로 모티베이션과 관련된 ERG 이론이 잘 적용되는 것을 확인하였다. 반면에, 게임 봇은 정상 사용자와 다르게 특정 목적을 위한 행동 패턴이 나타나기 때문에 모티베이션 이론을 적용하여 탐지할 경우 정상 사용자와는 다른 행동 패턴을 보이는 것을 발견하였다. 이를 통해 ERG 이론을 적용한 봇 탐지 방법을 국내 7위의 규모의 게임에 적용하여 봇 제재 리스트와 교차 분석한 결과, 99.74% 의 정확도로 정상 사용자와 봇을 분류할 수 있었다.

3차원 가상도시 모델에서 높이맵을 이용한 CNN 기반의 그림자 탐지방법 (CNN-based Shadow Detection Method using Height map in 3D Virtual City Model)

  • 윤희진;김주완;장인성;이병대;김남기
    • 인터넷정보학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-63
    • /
    • 2019
  • 최근 교육, 제조, 건설 등 다양한 응용 분야에서 사실적인 가상환경을 표현하기 위하여 실세계 영상데이터를 활용하는 사례가 증가하고 있다. 특히, 스마트 시티 등 디지털 트윈에 대한 관심이 높아지면서, 항공 영상 등 실제 촬영한 영상을 이용하여 현실감 있는 3D 도시 모델을 구축하고 있다. 그러나, 촬영된 항공 영상에는 태양에 의한 그림자가 포함되어 있으며, 그림자가 포함된 3D 도시 모델은 사용자에게 정보를 왜곡시켜 표현하는 문제를 안고 있다. 그림자를 제거하기 위하여 그동안 많은 연구가 진행되었지만, 아직까지 해결하기 어려운 도전적인 문제로 인식되고 있다. 본 논문에서는 VWorld에서 제공하는 3차원 공간정보를 이용하여 건물의 높이 맵을 포함한 가상환경 데이터 셋을 구축하고, 높이맵과 딥러닝을 이용한 새로운 그림자 탐지 방법을 제안한다. 실험 결과에 의하면, 높이맵을 사용했을 때 기존 방법보다 그림자 탐지 에러율이 감소한 것을 확인할 수 있다.

혼합형 데이터 보간을 위한 디노이징 셀프 어텐션 네트워크 (Denoising Self-Attention Network for Mixed-type Data Imputation)

  • 이도훈;김한준;전종훈
    • 한국콘텐츠학회논문지
    • /
    • 제21권11호
    • /
    • pp.135-144
    • /
    • 2021
  • 최근 데이터 기반 의사결정 기술이 데이터 산업을 이끄는 핵심기술로 자리 잡고 있는바, 이를 위한 머신러닝 기술은 고품질의 학습데이터를 요구한다. 하지만 실세계 데이터는 다양한 이유에 의해 결측값이 포함되어 이로부터 생성된 학습된 모델의 성능을 떨어뜨린다. 이에 실세계에 존재하는 데이터로부터 고성능 학습 모델을 구축하기 위해서 학습데이터에 내재한 결측값을 자동 보간하는 기법이 활발히 연구되고 있다. 기존 머신러닝 기반 결측 데이터 보간 기법은 수치형 변수에만 적용되거나, 변수별로 개별적인 예측 모형을 만들기 때문에 매우 번거로운 작업을 수반하게 된다. 이에 본 논문은 수치형, 범주형 변수가 혼합된 데이터에 적용 가능한 데이터 보간 모델인 Denoising Self-Attention Network(DSAN)를 제안한다. DSAN은 셀프 어텐션과 디노이징 기법을 결합하여 견고한 특징 표현 벡터를 학습하고, 멀티태스크 러닝을 통해 다수개의 결측치 변수에 대한 보간 모델을 병렬적으로 생성할 수 있다. 제안 모델의 유효성을 검증하기 위해 다수개의 혼합형 학습 데이터에 대하여 임의로 결측 처리한 후 데이터 보간 실험을 수행한다. 원래 값과 보간 값 간의 오차와 보간된 데이터를 학습한 이진 분류 모델의 성능을 비교하여 제안 기법의 유효성을 입증한다.

실시간 행동인식 기반 아동 행동분석 서비스 시스템 개발 (Development of a Real-time Action Recognition-Based Child Behavior Analysis Service System)

  • 오치민;김선우;박정민;조인장;김재인;이칠우
    • 스마트미디어저널
    • /
    • 제13권2호
    • /
    • pp.68-84
    • /
    • 2024
  • 본 논문에서는 행동인식 기술을 기반으로 0세에서 2세까지의 아동을 대상으로 행동 발달 지표(활동성, 사회성, 위험성)를 파악하여 고도의 복지 서비스를 제공할 수 있는 시스템과 알고리즘에 관해 기술한다. 행동인식은 0세 영아의 눕기에서 부터 2세 유아의 점프까지 총 11개 행동을 대상으로 하였으며 광주·전남지역 어린이집 3개소에서 연구용으로 제공받은 실제 영상으로부터 직접 취득한 데이터를 학습에 사용하였다. 11개 행동에 대해 425개 클립 영상에서 1,867개 행동 데이터셋을 구축하여 학습한 결과 평균 97.4%의 인식정확도를 확인하였다. 또 실세계 적용을 위해 행동분석 장치인 엣지 비디오 분석기(Edge Video Analyzer, EVA)를 제작하였고 이 장치 위에 4채널 영상에서 최대 30명까지 실시간 행동인식이 가능한 영역별 랜덤 프레임 선택 기반 PoseC3D 알고리즘을 구현하였다. 개발된 시스템은 3곳의 어린이집에 설치되어 10명의 보육교사에 의해 1개월 간 실증테스트가 진행되었고 설문조사 결과 체감 정확도는 91점, 서비스 만족도는 94점으로 평가되었다.

웹사이트의 구조를 고려한 개인정보 노출 위험도 계산 기법 (A Method for Calculating Exposure Risks of Privacy Information based on Website Structures)

  • 이수경;손진식;김관호
    • 한국전자거래학회지
    • /
    • 제21권1호
    • /
    • pp.1-14
    • /
    • 2016
  • 본 연구에서는 개인정보가 웹사이트에 노출될 시 위험 정도를 수치화할 수 있는 웹사이트 구조기반의 개인정보 노출 위험도 모델을 정의하기 위해 아래와 같은 두 가지 측면을 고려한다. 첫 번째는 개인정보가 노출되었을 경우 얼마나 민감한 정보인가에 따라 위험수준을 정의한다. 두 번째는 개인정보의 실제 노출 가능성을 측정하기 위해 웹페이지의 예상 방문 확률을 계산하여 어느 웹페이지에 노출된 개인정보가 더 위험한지 판별한다. 이를 바탕으로 대학교, 은행, 중앙 행정 기관, 시 도 교육청 4개의 분류를 선정하여 웹사이트 위험도를 측정하였다. 실험 결과, 은행은 다른 분류에 비해 상대적으로 잘 관리되고 있었으며 시 도 교육청, 중앙행정 기관, 대학교의 경우 웹사이트 위험도가 높게 측정되었다. 마지막으로, 본 연구는 개인정보 노출 문제의 완화를 위한 우선순위 기반 대처방안 수립에 도움을 줄 것으로 기대한다.