• Title/Summary/Keyword: real-time transmission scheme

Search Result 205, Processing Time 0.022 seconds

Wireless Fieldbus for Networked Control Systems using LR-WPAN

  • Choi, Dong-Hyuk;Kim, Dong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.119-125
    • /
    • 2008
  • This paper examines the use of a wireless Fieldbus based on IEEE 802.15.4 MAC protocol. The superframe of IEEE 802.15.4 is applied to a transmission scheme of real-time mixed data. The transmission and bandwidth allocation scheme are proposed for real-time communication using a superframe. The proposed wireless Fieldbus protocol is able to transmit three types of data (periodic data, sporadic data, and non real-time messages), and guarantee realtime transmission simultaneously within a limited timeframe.

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

High Performance QoS Traffic Transmission Scheme for Real-Time Multimedia Services in Wireless Networks

  • Kang, Moonsik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.182-191
    • /
    • 2012
  • This paper proposes a high performance QoS (Quality of Service) traffic transmission scheme to provide real-time multimedia services in wireless networks. This scheme is based on both a traffic estimation of the mean rate and a header compression method by dividing this network model into two parts, core RTP/UDP/IP network and wireless access parts, using the IEEE 802.11 WLAN. The improvement achieved by the scheme means that it can be designed to include a means of provisioning the high performance QoS strategy according to the requirements of each particular traffic flow by adapting the header compression for real-time multimedia data. A performance evaluation was carried out to show the effectiveness of the proposed traffic transmission scheme.

  • PDF

An Energy Efficient MAC Protocol Providing Guaranteed Service for Wireless Sensor Network

  • Kim, Dong-Won;Park, Tae-Geon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.123-140
    • /
    • 2011
  • In this paper, we propose an Energy Efficient Media Access Control (EE-MAC) protocol for wireless sensor networks. The proposed scheme is designed to save power consumption and guarantee quality-of-service for real-time traffic. EE-MAC uses the superframe structure which is bounded by the transmission of a beacon frame and can have an active and an inactive portion. The active period is divided into the contention free period (CFP) for real-time traffic transmission and the contention access period (CAP) for non-real-time traffic transmission. We propose the exclusively allocated backoff scheme which assigns a unique backoff time value to each real-time node based on bandwidth allocation and admission control. This scheme can avoid collision between real-time nodes by controlling distributed fashion and take effect a statistical time division multiple access. We also propose the algorithm to change the duty cycle adaptively according to channel utilization of media depending on network traffic load. This algorithm can prolong network lifetime by reducing the amount of energy wasted on idle listening.

A study of error correction scheme using RTP for real-time transmission (Realtime 전송을 위해 RTP를 사용한 Error Correction Scheme 연구)

  • 박덕근;박원배
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.9-12
    • /
    • 2000
  • A forward error correction (FEC) is usually used to correct the errors of the real-time data occurred at the reciever side which require a real-time transmission. The data transmission is peformed after being encapsulating by RTP and UDP. In the ITU-T study group 16, four FEC schemes using the XORing are presented. In the paper, a new supplementary scheme is proposed. In the delay problem the new scheme performs better than the scheme 3 but in the recovery ability for successive packet loss is worse than scheme 3. The proposed scheme which supplements the present schemes can be adapted easily to the current network environment.

  • PDF

Quality Adaptation of Intra-only Coded Video Transmission over Wireless Networks

  • Shu Tang;Yuanhong Deng;Peng Yang
    • Journal of Information Processing Systems
    • /
    • v.19 no.6
    • /
    • pp.817-829
    • /
    • 2023
  • Variable wireless channel is a big challenge for real-time video applications, and the rate adaptation of realtime video streaming becomes a hot topic. Intra-video coding is important for high-quality video communication and industrial video applications. In this paper, we proposed a novel adaptive scheme for real-time video transmission with intra-only coding over a wireless network. The key idea of this scheme is to estimate the instantaneous remaining capacity of the network to adjust the quality of the next several video frames, which not only can keep low queuing delay and ensure video quality, but also can respond to bandwidth changes quickly. We compare our scheme with three different schemes in the video transmission system. The experimental results show that our scheme has higher bandwidth utilization and faster bandwidth change response, while maintaining low queuing delay.

A Suitable Handoff Scheme for Time Sensitive Service in a W-ATM Network (무선 ATM 망에서 Time Sensitive Service에 적합한 Handoff 방법에 관한 연구)

  • Joo, Jong-Hyuk
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.14-19
    • /
    • 2005
  • In general, cell transmission delay is more sensitive for real time video service rather than cell losses in a wireless ATM network. Existing handoff schemes, which are emphasizing the prevention of cell losses, have limitations in cell transmission delay to satisfy QoS. In this paper, we propose a scheme to minimize transmission delay generated during the handoff and to maintain the sequence of cells. Transmission delay can be reduced by transmitting ATM cells with low CLP(i.e., CLP=0) prior to others and by discarding cells with high CLP(i.e., CLP= 1). The simulation results show that the proposed scheme is suitable for delay sensitive real time VBR service as well as fast handoff by giving high CLP to less meaningful MPEG frames.

Resource Allocation and Transmission Control Scheme using Window-Based Dynamic Bandwidth Smoothing Method (윈도우 기반 동적 대역폭 평활화 방식을 이용한 자원 할당 및 전송 제어 기법)

  • Kim Hyoung-Jin;Go Sung-Hyun;Ra In-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.943-950
    • /
    • 2005
  • Recently, many of researches on stream transmission for satisfying each of different real-time transmission condition of the multimedia data that demands various service quality through high-speed networks have been studied actively. In this paper, we design a scheme that discriminately reserves the network resources for the transmission of each multimedia application and propose a bandwidth allocation scheme for improving the utilization ratio of free resources. And we also propose a pipelining scheme for providing flexible real-time transmission. The proposed schemes can be used to support a real-time transmission by applying feedback transmission control method based on receiving buffer for guaranteeing the synchronization conditions requested by the multimedia data. Moreover, we propose a transmission control scheme that can take the amount of network resources down to the minimum amount within the range of permissible error-range under the guarantee with no quality degradation simultaneously when the bottleneck is caused by the network congestion. Finally, we propose a dynamic bandwidth smoothing scheme that can smooth the maximum bandwidth to the demand of each video steam for giving continuous transmission to the delay sensitive video steam between senders and receivers.

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Adaptive Image Transmission Scheme for Vision-Based Telerobot Control (시각기반 원격로봇 제어를 위한 적응 영상전송기법)

  • Lee, Jong-Kwang;Yoon, Ji-Sup;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1637-1645
    • /
    • 2004
  • In remote control of telerobotics equipment, the real-time visual feedback is necessary in order to facilitate real-time control. Because of the network congestion and the associated delays, the real-time image feedback is generally difficult in the public networks like internet. If the remote user is not able to receive the image feedback within a certain time, the work performance may tend to decrease, and it makes difficulties to control of the telerobotics equipment. In this paper, we propose an improved visual feedback scheme over the internet for telerobotics system. The size of a remote site image and its quality are adjusted for efficient transmission. The constructed system has a better real-time update characteristics, and shows a potential for the real-time visual control of the telerobotics system.