• 제목/요약/키워드: real-time of the sun

검색결과 1,273건 처리시간 0.032초

The horizontal line detection method using Haar-like features and linear regression in infrared images

  • Park, Byoung Sun;Kim, Jae Hyup
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권12호
    • /
    • pp.29-36
    • /
    • 2015
  • In this paper, we propose the horizontal line detection using the Haar-like features and linear regression in infrared images. In the marine environment horizon image is very useful information on a variety of systems. In the proposed method Haar-like features it was noted that the standard deviation be calculated in real time on a static area. Based on the pixel position, calculating the standard deviation of the around area in real time and, if the reaction is to filter out the largest pixel can get the energy map of the area containing the straight horizontal line. In order to select a horizontal line of pixels from the energy map, we applied the linear regression, calculating a linear fit to the transverse horizontal line across the image to select the candidate optimal horizontal. The proposed method was carried out in a horizontal line detecting real infrared image experiment for day and night, it was confirmed the excellent detection results than the legacy methods.

제설차량의 운행정보 실시간 모니터링 시스템 및 중계단말 분석 도구 설계에 관한 연구 (A Study on the Design of Relay Terminal Analysis Tool and Real-time Monitoring System for Driving Control Information of Snow-Removal Vehicles)

  • 이양선
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.713-718
    • /
    • 2014
  • 본 논문에서는 국내 겨울철 폭설과 같은 재난 발생시 각 지자체 별로 확보되어 있는 제설차량을 효과적으로 운영하고 제설현장 정보 및 차량의 이동성을 실시간으로 모니터링하여 폭설 재난현장에 대해 신속히 대처할 수 있는 실시간 모니터링 시스템을 제안하였다. 또한, 제안 시스템에서 중계단말의 효과적인 진단 및 각종 제어정보를 분석할 수 있는 중계단말 분석 도구를 설계하였다. 제안한 시스템은 폭설시 제설차량의 위치정보와 제설작업을 위한 차량제어정보 및 제설작업 상태정보를 실시간으로 모니터링 함으로써 짧은 시간에 효과적인 작업진행과 실시간 이동경로추적을 통하여 폭설 재난상황에 대한 효과적인 응급대처가 가능한 시스템이다.

A Study on the Improvement of Comfortable Living Environment by Using real-time Sensors

  • KIM, Chang-Mo;KIM, Ik-Soo;SHIN, Deok-Young;LEE, Hee-Sun;KWON, Seung-Mi;SHIN, Jin-Ho;SHIN, YongSeung
    • 웰빙융합연구
    • /
    • 제5권4호
    • /
    • pp.19-31
    • /
    • 2022
  • Purpose: This study was conducted to identify indoor air quality in various living spaces using sensors that can measure noise, vibration, fine dust, and odor in real time and to propose optimal indoor air quality maintenance management using Internet of Things(IoT). Research design, data and methodology: Using real-time sensors to monitor physical factors and environmental air pollutants that affect the comfort of the residential environment, Noise, Vibration, Atmospheric Pressure, Blue Light, Formaldehyde, Hydrogen Sulfide, Illumination, Temperature, Ozone, PM10, Aldehyde, Amine, LVOCs and TVOCs were measured. It were measured every 1 seconds from 4 offices and 4 stores on a small scale from November 2018 to January 2019. Results: The difference between illuminance and blue light for each measuring point was found to depend on lighting time, and the ratio of blue light in total illumination was 0.358 ~ 0.393. Formaldehyde and hydrogen sulphide were found to be higher than those that temporarily attract people in an indoor office space that is constantly active, requiring office air ventilation. The noise was found to be 50dB higher than the office WHO recommendation noise level of 35 ~ 40dB. The most important factors for indoor environmental quality were temperature> humidity> illumination> blue light in turn. Conclusions: Various factors that determine the comfort of indoor living space can be measured with real-time sensors. Further, it is judged that the use of IoT can help maintain indoor air quality comfortably.

Volatility for High Frequency Time Series Toward fGARCH(1,1) as a Functional Model

  • Hwang, Sun Young;Yoon, Jae Eun
    • Quantitative Bio-Science
    • /
    • 제37권2호
    • /
    • pp.73-79
    • /
    • 2018
  • As high frequency (HF, for short) time series is now prevalent in the presence of real time big data, volatility computations based on traditional ARCH/GARCH models need to be further developed to suit the high frequency characteristics. This article reviews realized volatilities (RV) and multivariate GARCH (MGARCH) to deal with high frequency volatility computations. As a (functional) infinite dimensional models, the fARCH and fGARCH are introduced to accommodate ultra high frequency (UHF) volatilities. The fARCH and fGARCH models are developed in the recent literature by Hormann et al. [1] and Aue et al. [2], respectively, and our discussions are mainly based on these two key articles. Real data applications to domestic UHF financial time series are illustrated.

Real-Time Cattle Action Recognition for Estrus Detection

  • Heo, Eui-Ju;Ahn, Sung-Jin;Choi, Kang-Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권4호
    • /
    • pp.2148-2161
    • /
    • 2019
  • In this paper, we present a real-time cattle action recognition algorithm to detect the estrus phase of cattle from a live video stream. In order to classify cattle movement, specifically, to detect the mounting action, the most observable sign of the estrus phase, a simple yet effective feature description exploiting motion history images (MHI) is designed. By learning the proposed features using the support vector machine framework, various representative cattle actions, such as mounting, walking, tail wagging, and foot stamping, can be recognized robustly in complex scenes. Thanks to low complexity of the proposed action recognition algorithm, multiple cattle in three enclosures can be monitored simultaneously using a single fisheye camera. Through extensive experiments with real video streams, we confirmed that the proposed algorithm outperforms a conventional human action recognition algorithm by 18% in terms of recognition accuracy even with much smaller dimensional feature description.

스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리 (Real-Time IoT Big-data Processing for Stream Reasoning)

  • 윤창호;박종원;정혜선;이용우
    • 인터넷정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.1-9
    • /
    • 2017
  • 스마트-시티는 스마트-시티의 사물인터넷(Internet of Things: IoT) 디바이스를 비롯한 수많은 인프라를 지능적으로 관리하고, 다양한 스마트 어플리케이션을 도시민에게 제공한다. 스마트-시티에서는 스마트-시티 어플리케이션에서 필요한 다양한 정보를 제공하기 위하여 수많은 사물인터넷 기기들로부터 끊임없이 발생하는 대규모의 스트림 빅-데이터를 지능적으로 처리하는 기능이 필요하다. 하지만, 스마트-시티에서 대규모의 스트림 빅-데이터를 처리하는 것에는 실시간 처리와 관련된 제약들이 존재한다. 본 스마트-시티-사업단에서는 선행 연구에서 스마트-시티미들웨어와 이를 이용한 스트림-리즈닝 방법론 및 시스템을 개발하였다. 스마트-시티에서 스마트 서비스를 제공하기 위하여, 스마트-시티-사업단에서는 스트림-리즈닝을 사용하는 방법론을 사용한다. 이 스트림-리즈닝은 대용량 데이터의 실시간 처리를 필요로 한다. 따라서, 후속연구로서 스마트-시티미들웨어의 클라우드-컴퓨팅 플랫폼을 이용하여 스트림-리즈닝을 위한 실시간 분산병렬처리 클라우드-컴퓨팅 방법론과 시스템을 개발하였다. 본 논문에서는 스마트-시티에서 발생하는 사물인터넷 빅-데이터를 스트림-리즈닝에 사용하기 위하여 이 후속연구에서 개발된 클라우드 기반 실시간 분산병렬처리 연구결과를 소개한다. 스마트-시티의 각종 센서들로부터 전송되어지는 사물인터넷 빅-데이터를 사용하여 스트림-리즈닝하는 데 필요한 클라우드-컴퓨팅 기반의 실시간 분산처리 방법론과 시스템을 소개하고 있으며, 이 방법론을 선행연구에서 개발한 스마트-시티 미들웨어에 구현하여 실시간 분산처리 성능을 평가한 것을 소개한다.

스마트그리드 실시간요금과 연동되는 수요반응을 유도하기 위한 HEMS 설계에 관한 연구 (A Study on Design of Home Energy Management System to Induce Price Responsive Demand Response to Real Time Pricing of Smart Grid)

  • 강동주;박선주;최수정;한승재
    • 조명전기설비학회논문지
    • /
    • 제25권11호
    • /
    • pp.39-49
    • /
    • 2011
  • Smart Grid has two main objectives on both supply and demand aspects which are to distribute the renewable energy sources on supply side and to develop realtime price responses on demand side. Renewable energy does not consume fossil fuels, therefore it improves the eco-friendliness and saves the cost of power system operation at the same time. Demand response increases the flexibility of the power system by mitigating the fluctuation from renewable energies, and reduces the capacity investment cost by shedding the peak load to off-peak periods. Currently Smart Grid technologies mainly focus on energy monitoring and display services but it has been proved that enabling technologies can induce the higher demand responses through many pilot projects in USA. On this context, this paper provides a price responsive algorithm for HEMS (home energy management system) on the real time pricing environment. This paper identifies the demand response as a core function of HEMS and classifies the demand into 3 categories of fixed, transferable, and realtime responsive loads which are coordinated and operated for the utility maximization or cost minimization with the optimal usage combination of three kinds of demand.

지능형 차량 HILS를 위한 실시간 차량 동역학 모델 개발 (Development of Real Time Vehicle Dynamics Models for Intelligent Vehicle HILS)

  • 이창호;김성수;정완희;이선호
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.199-206
    • /
    • 2006
  • Real time vehicle dynamics models have been developed with the subsystem synthesis method for intelligent vehicle HILS system. Three different models for solving subsystem equations are compared in order to find out the best suitable model for HILS applications. The first model is based on the generalized coordinate partitioning technique, and the second one is on the approximate function approach, and the last one is on the constraint stabilization method. To investigate the theoretical efficiency of three proposed methods, arithmetic operators used in the formulations of three models are counted. Bump run simulations with half-sine bump have also carried out with three different models to measure the actual CPU time to validate theoretical investigation.

Real-Time 2D-to-3D Conversion for 3DTV using Time-Coherent Depth-Map Generation Method

  • Nam, Seung-Woo;Kim, Hye-Sun;Ban, Yun-Ji;Chien, Sung-Il
    • International Journal of Contents
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2014
  • Depth-image-based rendering is generally used in real-time 2D-to-3D conversion for 3DTV. However, inaccurate depth maps cause flickering issues between image frames in a video sequence, resulting in eye fatigue while viewing 3DTV. To resolve this flickering issue, we propose a new 2D-to-3D conversion scheme based on fast and robust depth-map generation from a 2D video sequence. The proposed depth-map generation algorithm divides an input video sequence into several cuts using a color histogram. The initial depth of each cut is assigned based on a hypothesized depth-gradient model. The initial depth map of the current frame is refined using color and motion information. Thereafter, the depth map of the next frame is updated using the difference image to reduce depth flickering. The experimental results confirm that the proposed scheme performs real-time 2D-to-3D conversions effectively and reduces human eye fatigue.

Application of the rpoS Gene for Species-Specific Detection of Vibrio vulnificus by Real-Time PCR

  • Kim, Dong-Gyun;Ahn, Sun-Hee;Kim, Lyoung-Hwa;Park, Kee-Jai;Hong, Yong-Ki;Kong, In-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권11호
    • /
    • pp.1841-1847
    • /
    • 2008
  • Vibrio vulnificus is a causative agent of serious diseases in humans, resulting from the contact of wound with seawater or consumption of raw seafood. Several studies aimed at detecting V. vulnificus have targeted vvh as a representative virulence toxin gene belonging to the bacterium. In this study, we targeted the rpoS gene, a general stress regulator, to detect V. vulnificus. PCR specificity was identified by amplification of 8 V. vulnificus templates and by the loss of a PCR product with 36 non-V. vulnificus strains. The PCR assay had the 273-bp fragment and the sensitivity of 10 pg DNA from V. vulnificus. SYBR Green I-based real-time PCR assay targeting the rpoS gene showed a melting temperature of approximately $84^{\circ}C$ for the V. vulnificus strains. The minimum level of detection by real-time PCR was 2 pg of purified genomic DNA, or $10^3$ V. vulnificus cells from pure cultured broth and $10^3$ cells in 1 g of oyster tissue homogenates. These data indicate that real-time PCR is a sensitive, species-specific, and rapid method for detecting this bacterium, using the rpoS gene in pure cultures and in infected oyster tissues.