• Title/Summary/Keyword: real-time obstacle avoidance

Search Result 108, Processing Time 0.039 seconds

Real-time obstacle avoidance for redundant manipulator (여유 자유도 로봇의 실시간 충돌 회피)

  • 조웅장;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1140-1143
    • /
    • 1996
  • A new approach based on artificial potential function is proposed for the obstacle avoidance of redundant manipulators. Unlike the so-called "global" path planning method, which requires expensive computation for the path search before the manipulator starts to move, this new approach, "local" path planning, researches the path in real-time using the local distance information. Previous use of artificial potential function has exhibited local minima in some complex environments. This thesis proposes a potential function that has no local minima even for a cluttered environment. This potential function has been implemented for the collision avoidance of a redundant robot in Simulation. The simulation also employ an algorithm that eliminates collisions with obstacles by calculating the repulsive potential exerted on links, based on the shortest distance to object.

  • PDF

Improving on the Obstacle Avoidance Method for a Mobile Robot (mobile robot의 장애물 회피방법 개선)

  • Park, Jong-Hun;Lee, Woo-Young;Huh, Dei-Jeung;Huh, Uk-Youl
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.146-149
    • /
    • 2002
  • This paper presents collision avoidance for mobile robots equipped with synchro-drive using curvature trajectory by the obstacle type. he new real-time obstacle avoidance method presents how to create a curvature trajectory in which dynamics of a mobile robot is considered we controlled translation and rotational velocity of the mobile robot. Using these two speeds with curvature trajectory, the mobile robot navigates to target point without collision. We consider that the robot going to curvature trajectory by obstacle size towards a goal location. The collision avoidance has been implemented and tested using pioneer2-dxe mobile robot.

  • PDF

A Real Time Path Planning in Dynamic Environment (동적 환경에서의 실시간 경로 설정)

  • Kwak, Jae-Hyuk;Lim, Joon-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.939-940
    • /
    • 2006
  • Many researches on path planning and obstacle avoidance for the fundamentals of mobile robot have been done. In this paper, we propose the algorithm of path planning and obstacle avoidance for mobile robot. We call the proposed method Random Access Sequence(RAS) method. RAS method using obstacle information from variable sensors is useful to get minimum path length to goal.

  • PDF

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.

A Data Fusion Method of Odometry Information and Distance Sensor for Effective Obstacle Avoidance of a Autonomous Mobile Robot (자율이동로봇의 효율적인 충돌회피를 위한 오도메트리 정보와 거리센서 데이터 융합기법)

  • Seo, Dong-Jin;Ko, Nak-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.686-691
    • /
    • 2008
  • This paper proposes the concept of "virtual sensor data" and its application for real time obstacle avoidance. The virtual sensor data is virtual distance which takes care of the movement of the obstacle as well as that of the robot. In practical application, the virtual sensor data is calculated from the odometry data and the range sensor data. The virtual sensor data can be used in all the methods which use distance data for collision avoidance. Since the virtual sensor data considers the movement of the robot and the obstacle, the methods utilizing the virtual sensor data results in more smooth and safer collision-free motion.

Prediction and Avoidance of the Moving Obstacles Using the Kalman Filters and Fuzzy Algorithm (칼만 필터와 퍼지 알고리즘을 이용한 이동 장애물의 위치예측 및 회피에 관한 연구)

  • Joung Won-Sang;Choi Young-Kiu;Lee Sang-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.5
    • /
    • pp.307-314
    • /
    • 2005
  • In this paper, we propose a predictive system for the avoidance of the moving obstacle. In the dynamic environment, robots should travel to the target point without collision with the moving obstacle. For this, we need the prediction of the position and velocity of the moving obstacle. So, we use the Kalman filer algorithm for the prediction. And for the application of the Kalman filter algorithm about the real time travel, we obtain the position of the obstacle which has the future time using Fuzzy system. Through the computer simulation studies, we show the effectiveness of the proposed navigational algorithm for autonomous mobile robots.

Full-Coverage algorithm with local obstacle avoidance algorithm (지역적 회피 알고리즘을 갖는 Full-Coverage 알고리즘)

  • Park G-M.;Son Y-D.;Kim Y.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1468-1471
    • /
    • 2005
  • This Paper is to find out a solution for the full-coverage algorithm requiring the real-time processing such as mobile home service robots and vacuum cleaner robots. Previous methods are used by adopting based grid approach method. They used lots of sensors, a high speed CPU, expensive ranger sensors and huge memory. Besides, most full-coverage algorithms should have a map before obstacle avoidance. However, if a robot able to recognize the tangent vector of obstacles, it is able to bring the same result with less sensors and simplified hardware. Therefore, this study suggests a topological based approach and a local obstacle voidance method using a few of PSD sensors and ultra sonic sensors. The simulation results are presented to prove its applicability.

  • PDF

Sensor Data Fusion for Navigation of Mobile Robot With Collision Avoidance and Trap Recovery

  • Jeon, Young-Su;Ahn, Byeong-Kyu;Kuc, Tae-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2461-2466
    • /
    • 2003
  • This paper presents a simple sensor fusion algorithm using neural network for navigation of mobile robots with obstacle avoidance and trap recovery. The multiple sensors input sensor data to the input layer of neural network activating the input nodes. The multiple sensors used include optical encoders, ultrasonic sensors, infrared sensors, a magnetic compass sensor, and GPS sensors. The proposed sensor fusion algorithm is combined with the VFH(Vector Field Histogram) algorithm for obstacle avoidance and AGPM(Adaptive Goal Perturbation Method) which sets adaptive virtual goals to escape trap situations. The experiment results show that the proposed low-level fusion algorithm is effective for real-time navigation of mobile robot.

  • PDF

A Real-time Obstacle Avoidance of Mobile Robots using Limit-cycle and Vector Field Method (Limit-cycle과 벡터장법을 이용한 이동로봇의 실시간 장애물 회피)

  • Yun, Jae-Ho;Jie, Min-Seok;Lee, Kang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.243-246
    • /
    • 2003
  • In this paper, we propose a novel navigation method combined limit-cycle method and the vector field method for avoidance of unexpected obstacles in the dynamic environment. The limit-cycle method is used to obstacle avoidance in front of the robot and the vector field method is used to obstacle avoidance in the side of robot. The proposed method is tested on pioneer 2-DX mobile robot. The simulations and experiments demonstrate in the effectiveness of the proposed method for navigation of a mobile robot in the complicated and dynamic environments.

  • PDF

Unsupervised Real-time Obstacle Avoidance Technique based on a Hybrid Fuzzy Method for AUVs

  • Anwary, Arif Reza;Lee, Young-Il;Jung, Hee;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.1
    • /
    • pp.82-86
    • /
    • 2008
  • The article presents ARTMAP and Fuzzy BK-Product approach underwater obstacle avoidance for the Autonomous underwater Vehicles (AUV). The AUV moves an unstructured area of underwater and could be met with obstacles in its way. The AUVs are equipped with complex sensorial systems like camera, aquatic sonar system, and transducers. A Neural integrated Fuzzy BK-Product controller, which integrates Fuzzy logic representation of the human thinking procedure with the learning capabilities of neural-networks (ARTMAP), is developed for obstacle avoidance in the case of unstructured areas. In this paper, ARTMAP-Fuzzy BK-Product controller architecture comprises of two distinct elements, are 1) Fuzzy Logic Membership Function and 2) Feed-Forward ART component. Feed-Forward ART component is used to understanding the unstructured underwater environment and Fuzzy BK-Product interpolates the Fuzzy rule set and after the defuzzyfication, the output is used to take the decision for safety direction to go for avoiding the obstacle collision with the AUV. An on-line reinforcement learning method is introduced which adapts the performance of the fuzzy units continuously to any changes in the environment and make decision for the optimal path from source to destination.