• 제목/요약/키워드: real-time modeling prediction

검색결과 90건 처리시간 0.03초

유비쿼터스 컴퓨팅 환경에서 컨텍스트 예측을 위한 시계열 분석 기반 사용자 모델링 (User Modeling based Time-Series Analysis for Context Prediction in Ubiquitous Computing Environment)

  • 최영환;이상용
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.655-660
    • /
    • 2009
  • 기존의 예측 알고리즘들은 실시간 환경에서 학습 데이터 처리에서 오는 시간지연 문제, 구현의 어려움 등으로 개인화된 실시간 서비스를 제공하는 컨텍스트 인식 환경에서 사용하기에 적합하지 않다. 본 논문에서는 사용자 모델을 이용하여 컨텍스트 예측 알고리즘의 처리시간 단축과 예측 정확도를 향상시키기 위한 연구를 제안한다. 컨텍스트 예측을 위하여 사용자의 컨텍스트 중에서 이동경로를 사용한다. 이동경로를 기반으로 시계열 분석 방법을 통하여 사용자 모델을 생성하고, 생성된 사용자 모델을 시퀀스 매칭 방법을 이용하여 사용자의 컨텍스트를 예측한다. 기존 예측 알고리즘과 본 연구에서 제안한 예측 알고리즘을 시뮬레이션을 통하여 처리시간 및 예측 정확도를 비교한 결과, 실시간 서비스 환경에서 예측 정확도는 기존 예측 알고리즘들과 비슷한 결과를 보였고, 처리시간은 사용자 모델을 사용한 경우가 시퀀스 매칭을 사용한 경우보다 평균 40% 정도 감소시킬 수 있음을 알 수 있었다.

Real-time modeling prediction for excavation behavior

  • Ni, Li-Feng;Li, Ai-Qun;Liu, Fu-Yi;Yin, Honore;Wu, J.R.
    • Structural Engineering and Mechanics
    • /
    • 제16권6호
    • /
    • pp.643-654
    • /
    • 2003
  • Two real-time modeling prediction (RMP) schemes are presented in this paper for analyzing the behavior of deep excavations during construction. The first RMP scheme is developed from the traditional AR(p) model. The second is based on the simplified Elman-style recurrent neural networks. An on-line learning algorithm is introduced to describe the dynamic behavior of deep excavations. As a case study, in-situ measurements of an excavation were recorded and the measured data were used to verify the reliability of the two schemes. They proved to be both effective and convenient for predicting the behavior of deep excavations during construction. It is shown through the case study that the RMP scheme based on the neural network is more accurate than that based on the traditional AR(p) model.

Oil Spill Response System using Server-client GIS

  • Kim, Hye-Jin;Lee, Moon-Jin;Oh, Se-Woong
    • 한국항해항만학회지
    • /
    • 제35권9호
    • /
    • pp.735-740
    • /
    • 2011
  • It is necessary to develop the one stop system in order to protect our marine environment rapidly from oil spill accident. The purpose of this study is to develop real time database for oil spill prediction modeling and implement real time prediction modelling with ESI and server-client GIS based user interface. The existing oil spill prediction model cannot provide one stop information system for public and government who should protect sea from oil spill accident. The development of multi user based information system permits integrated handling of real time meteorological data from external ftp. A server-client GIS based model is integrated on the basis of real time database and ESI map to provide the result of the oil spill prediction model. End users can access through the client interface and request analysis such as oil spill prediction and GIS functions on the network as their own purpose.

실시간 데이터를 위한 64M DRAM s-Poly 식각공정에서의 웨이퍼 상태 예측 (Wafer state prediction in 64M DRAM s-Poly etching process using real-time data)

  • 이석주;차상엽;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.664-667
    • /
    • 1997
  • For higher component density per chip, it is necessary to identify and control the semiconductor manufacturing process more stringently. Recently, neural networks have been identified as one of the most promising techniques for modeling and control of complicated processes such as plasma etching process. Since wafer states after each run using identical recipe may differ from each other, conventional neural network models utilizing input factors only cannot represent the actual state of process and equipment. In this paper, in addition to the input factors of the recipe, real-time tool data are utilized for modeling of 64M DRAM s-poly plasma etching process to reflect the actual state of process and equipment. For real-time tool data, we collect optical emission spectroscopy (OES) data. Through principal component analysis (PCA), we extract principal components from entire OES data. And then these principal components are included to input parameters of neural network model. Finally neural network model is trained using feed forward error back propagation (FFEBP) algorithm. As a results, simulation results exhibit good wafer state prediction capability after plasma etching process.

  • PDF

상태피드백 실시간 회귀 신경회망을 이용한 EEG 신호 예측 (EEG Signal Prediction by using State Feedback Real-Time Recurrent Neural Network)

  • 김택수
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권1호
    • /
    • pp.39-42
    • /
    • 2002
  • For the purpose of modeling EEG signal which has nonstationary and nonlinear dynamic characteristics, this paper propose a state feedback real time recurrent neural network model. The state feedback real time recurrent neural network is structured to have memory structure in the state of hidden layers so that it has arbitrary dynamics and ability to deal with time-varying input through its own temporal operation. For the model test, Mackey-Glass time series is used as a nonlinear dynamic system and the model is applied to the prediction of three types of EEG, alpha wave, beta wave and epileptic EEG. Experimental results show that the performance of the proposed model is better than that of other neural network models which are compared in this paper in some view points of the converging speed in learning stage and normalized mean square error for the test data set.

Real Time Current Prediction with Recurrent Neural Networks and Model Tree

  • Cini, S.;Deo, Makarand Chintamani
    • International Journal of Ocean System Engineering
    • /
    • 제3권3호
    • /
    • pp.116-130
    • /
    • 2013
  • The prediction of ocean currents in real time over the warning times of a few hours or days is required in planning many operation-related activities in the ocean. Traditionally this is done through numerical models which are targeted toward producing spatially distributed information. This paper discusses a complementary method to do so when site-specific predictions are desired. It is based on the use of a recurrent type of neural network as well as the statistical tool of model tree. The measurements made at a site in Indian Ocean over a period of 4 years were used. The predictions were made over 72 time steps in advance. The models developed were found to be fairly accurate in terms of the selected error statistics. Among the two modeling techniques the model tree performed better showing the necessity of using distributed models for different sub-domains of data rather than a unique one over the entire input domain. Typically such predictions were associated with average errors of less than 2.0 cm/s. Although the prediction accuracy declined over longer intervals, it was still very satisfactory in terms of theselected error criteria. Similarly prediction of extreme values matched with that of the rest of predictions. Unlike past studies both east-west and north-south current components were predicted fairly well.

RAMS의 실시간 기상장 예측 향상을 위한 최신 토지피복도 자료의 적용가능성 (Applicable Evaluation of the Latest Land-use Data for Developing a Real-time Atmospheric Field Prediction of RAMS)

  • 원경미;이화운;유정아;홍현수;황만식;천광수;최광수;이문순
    • 한국대기환경학회지
    • /
    • 제24권1호
    • /
    • pp.1-15
    • /
    • 2008
  • Chemical Accident Response Information System (CARIS) which has been designed for the efficient emergency response of chemical accidents produces the real-time atmospheric fields through the Regional Atmospheric Modeling System, RAMS. The previous studies were emphasized that improving an initial input data had more effective results in developing prediction ability of atmospheric model. In a continuous effort to improve an initial input data, we replaced the land-use dataset using in the RAMS, which is a high resolution USGS digital data constructed in April, 1993, with the latest land-use data of the Korea Ministry of Environment over the South Korea and simulated atmospheric fields for developing a real-time prediction in dispersion of chemicals. The results showed that the new land-use data was written in a standard RAMS format and shown the modified surface characteristics and the landscape heterogeneity resulting from land-use change. In the results of sensitivity experiment we got the improved atmospheric fields and assured that it will give more reliable real-time atmospheric fields to all users of CARIS for the dispersion forecast in associated with hazardous chemical releases as well as general air pollutants.

멀티미디어 인터넷 전송을 위한 전송률 제어 요소의 신경회로망 모델링 (Modeling of Multimedia Internet Transmission Rate Control Factors Using Neural Networks)

  • 정길도;유성구
    • 제어로봇시스템학회논문지
    • /
    • 제11권4호
    • /
    • pp.385-391
    • /
    • 2005
  • As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

도시 빅데이터를 활용한 스마트시티의 교통 예측 모델 - 환경 데이터와의 상관관계 기계 학습을 통한 예측 모델의 구축 및 검증 - (Big Data Based Urban Transportation Analysis for Smart Cities - Machine Learning Based Traffic Prediction by Using Urban Environment Data -)

  • 장선영;신동윤
    • 한국BIM학회 논문집
    • /
    • 제8권3호
    • /
    • pp.12-19
    • /
    • 2018
  • The research aims to find implications of machine learning and urban big data as a way to construct the flexible transportation network system of smart city by responding the urban context changes. This research deals with a problem that existing a bus headway model is difficult to respond urban situations in real-time. Therefore, utilizing the urban big data and machine learning prototyping tool in weathers, traffics, and bus statues, this research presents a flexible headway model to predict bus delay and analyze the result. The prototyping model is composed by real-time data of buses. The data is gathered through public data portals and real time Application Program Interface (API) by the government. These data are fundamental resources to organize interval pattern models of bus operations as traffic environment factors (road speeds, station conditions, weathers, and bus information of operating in real-time). The prototyping model is implemented by the machine learning tool (RapidMiner Studio) and conducted several tests for bus delays prediction according to specific circumstances. As a result, possibilities of transportation system are discussed for promoting the urban efficiency and the citizens' convenience by responding to urban conditions.

A Study on the Establishment of Odor Management System in Gangwon-do Traditional Market

  • Min-Jae JUNG;Kwang-Yeol YOON;Sang-Rul KIM;Su-Hye KIM
    • 웰빙융합연구
    • /
    • 제6권2호
    • /
    • pp.27-31
    • /
    • 2023
  • Purpose: Establishment of a real-time monitoring system for odor control in traditional markets in Gangwon-do and a system for linking prevention facilities. Research design, data and methodology: Build server and system logic based on data through real-time monitoring device (sensor-based). A temporary data generation program for deep learning is developed to develop a model for odor data. Results: A REST API was developed for using the model prediction service, and a test was performed to find an algorithm with high prediction probability and parameter values optimized for learning. In the deep learning algorithm for AI modeling development, Pandas was used for data analysis and processing, and TensorFlow V2 (keras) was used as the deep learning library. The activation function was swish, the performance of the model was optimized for Adam, the performance was measured with MSE, the model method was Functional API, and the model storage format was Sequential API (LSTM)/HDF5. Conclusions: The developed system has the potential to effectively monitor and manage odors in traditional markets. By utilizing real-time data, the system can provide timely alerts and facilitate preventive measures to control and mitigate odors. The AI modeling component enhances the system's predictive capabilities, allowing for proactive odor management.