• Title/Summary/Keyword: real-time enterprise

Search Result 182, Processing Time 0.019 seconds

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.