• Title/Summary/Keyword: real time object detection

Search Result 524, Processing Time 0.031 seconds

Development for Analysis Service of Crowd Density in CCTV Video using YOLOv4 (YOLOv4를 이용한 CCTV 영상 내 군중 밀집도 분석 서비스 개발)

  • Seung-Yeon Hwang;Jeong-Joon Kim
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.24 no.3
    • /
    • pp.177-182
    • /
    • 2024
  • In this paper, the purpose of this paper is to predict and prevent the risk of crowd concentration in advance for possible future crowd accidents based on the Itaewon crush accident in Korea on October 29, 2022. In the case of a single CCTV, the administrator can determine the current situation in real time, but since the screen cannot be seen throughout the day, objects are detected using YOLOv4, which learns images taken with CCTV angle, and safety accidents due to crowd concentration are prevented by notification when the number of clusters exceeds. The reason for using the YOLO v4 model is that it improves with higher accuracy and faster speed than the previous YOLO model, making object detection techniques easier. This service will go through the process of testing with CCTV image data registered on the AI-Hub site. Currently, CCTVs have increased exponentially in Korea, and if they are applied to actual CCTVs, it is expected that various accidents, including accidents caused by crowd concentration in the future, can be prevented.

Light-weight Signal Processing Method for Detection of Moving Object based on Magnetometer Applications (이동 물체 탐지를 위한 자기센서 응용 신호처리 기법)

  • Kim, Ki-Taae;Kwak, Chul-Hyun;Hong, Sang-Gi;Park, Sang-Jun;Kim, Keon-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.153-162
    • /
    • 2009
  • This paper suggests the novel light-weight signal processing algorithm for wireless sensor network applications which needs low computing complexity and power consumption. Exponential average method (EA) is utilized by real time, to process the magnetometer signal which is analyzed to understand the own physical characteristic in time domain. EA provides the robustness about noise, magnetic drift by temperature and interference, furthermore, causes low memory consumption and computing complexity for embedded processor. Hence, optimal parameter of proposal algorithm is extracted by statistical analysis. Using general and precision magnetometer, detection probability over 90% is obtained which restricted by 5% false alarm rate in simulation and using own developed magnetometer H/W, detection probability over 60~70% is obtained under 1~5% false alarm rate in simulation and experiment.

Crosswalk Detection Model for Visually impaired Using Deep Learning (딥러닝을 이용한 시각장애인용 횡단보도 탐지 모델 연구)

  • Junsoo Kim;Hyuk Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.1
    • /
    • pp.67-75
    • /
    • 2024
  • Crosswalks play an important role for the safe movement of pedestrians in a complex urban environment. However, for the visually impaired, crosswalks can be a big risk factor. Although assistive tools such as braille blocks and acoustic traffic lights exist for safe walking, poor management can sometimes act as a hindrance to safety. This paper proposes a method to improve accuracy in a deep learning-based real-time crosswalk detection model that can be used in applications for pedestrian assistance for the disabled at the beginning. The image was binarized by utilizing the characteristic that the white line of the crosswalk image contrasts with the road surface, and through this, the crosswalk could be better recognized and the location of the crosswalk could be more accurately identified by using two models that learned the whole and the middle part of the crosswalk, respectively. In addition, it was intended to increase accuracy by creating a boundary box that recognizes crosswalks in two stages: whole and part. Through this method, additional frames that the detection model did not detect in RGB image learning from the crosswalk image could be detected.

Markerless camera pose estimation framework utilizing construction material with standardized specification

  • Harim Kim;Heejae Ahn;Sebeen Yoon;Taehoon Kim;Thomas H.-K. Kang;Young K. Ju;Minju Kim;Hunhee Cho
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.535-544
    • /
    • 2024
  • In the rapidly advancing landscape of computer vision (CV) technology, there is a burgeoning interest in its integration with the construction industry. Camera calibration is the process of deriving intrinsic and extrinsic parameters that affect when the coordinates of the 3D real world are projected onto the 2D plane, where the intrinsic parameters are internal factors of the camera, and extrinsic parameters are external factors such as the position and rotation of the camera. Camera pose estimation or extrinsic calibration, which estimates extrinsic parameters, is essential information for CV application at construction since it can be used for indoor navigation of construction robots and field monitoring by restoring depth information. Traditionally, camera pose estimation methods for cameras relied on target objects such as markers or patterns. However, these methods, which are marker- or pattern-based, are often time-consuming due to the requirement of installing a target object for estimation. As a solution to this challenge, this study introduces a novel framework that facilitates camera pose estimation using standardized materials found commonly in construction sites, such as concrete forms. The proposed framework obtains 3D real-world coordinates by referring to construction materials with certain specifications, extracts the 2D coordinates of the corresponding image plane through keypoint detection, and derives the camera's coordinate through the perspective-n-point (PnP) method which derives the extrinsic parameters by matching 3D and 2D coordinate pairs. This framework presents a substantial advancement as it streamlines the extrinsic calibration process, thereby potentially enhancing the efficiency of CV technology application and data collection at construction sites. This approach holds promise for expediting and optimizing various construction-related tasks by automating and simplifying the calibration procedure.

An Approach Using LSTM Model to Forecasting Customer Congestion Based on Indoor Human Tracking (실내 사람 위치 추적 기반 LSTM 모델을 이용한 고객 혼잡 예측 연구)

  • Hee-ju Chae;Kyeong-heon Kwak;Da-yeon Lee;Eunkyung Kim
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • In this detailed and comprehensive study, our primary focus has been placed on accurately gauging the number of visitors and their real-time locations in commercial spaces. Particularly, in a real cafe, using security cameras, we have developed a system that can offer live updates on available seating and predict future congestion levels. By employing YOLO, a real-time object detection and tracking algorithm, the number of visitors and their respective locations in real-time are also monitored. This information is then used to update a cafe's indoor map, thereby enabling users to easily identify available seating. Moreover, we developed a model that predicts the congestion of a cafe in real time. The sophisticated model, designed to learn visitor count and movement patterns over diverse time intervals, is based on Long Short Term Memory (LSTM) to address the vanishing gradient problem and Sequence-to-Sequence (Seq2Seq) for processing data with temporal relationships. This innovative system has the potential to significantly improve cafe management efficiency and customer satisfaction by delivering reliable predictions of cafe congestion to all users. Our groundbreaking research not only demonstrates the effectiveness and utility of indoor location tracking technology implemented through security cameras but also proposes potential applications in other commercial spaces.

Vision-based Low-cost Walking Spatial Recognition Algorithm for the Safety of Blind People (시각장애인 안전을 위한 영상 기반 저비용 보행 공간 인지 알고리즘)

  • Sunghyun Kang;Sehun Lee;Junho Ahn
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.81-89
    • /
    • 2023
  • In modern society, blind people face difficulties in navigating common environments such as sidewalks, elevators, and crosswalks. Research has been conducted to alleviate these inconveniences for the visually impaired through the use of visual and audio aids. However, such research often encounters limitations when it comes to practical implementation due to the high cost of wearable devices, high-performance CCTV systems, and voice sensors. In this paper, we propose an artificial intelligence fusion algorithm that utilizes low-cost video sensors integrated into smartphones to help blind people safely navigate their surroundings during walking. The proposed algorithm combines motion capture and object detection algorithms to detect moving people and various obstacles encountered during walking. We employed the MediaPipe library for motion capture to model and detect surrounding pedestrians during motion. Additionally, we used object detection algorithms to model and detect various obstacles that can occur during walking on sidewalks. Through experimentation, we validated the performance of the artificial intelligence fusion algorithm, achieving accuracy of 0.92, precision of 0.91, recall of 0.99, and an F1 score of 0.95. This research can assist blind people in navigating through obstacles such as bollards, shared scooters, and vehicles encountered during walking, thereby enhancing their mobility and safety.

Separation of Touching Pigs using YOLO-based Bounding Box (YOLO 기반 외곽 사각형을 이용한 근접 돼지 분리)

  • Seo, J.;Ju, M.;Choi, Y.;Lee, J.;Chung, Y.;Park, D.
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.2
    • /
    • pp.77-86
    • /
    • 2018
  • Although separation of touching pigs in real-time is an important issue for a 24-h pig monitoring system, it is challenging to separate accurately the touching pigs in a crowded pig room. In this study, we propose a separation method for touching pigs using the information generated from Convolutional Neural Network(CNN). Especially, we apply one of the CNN-based object detection methods(i.e., You Look Only Once, YOLO) to solve the touching objects separation problem in an active manner. First, we evaluate and select the bounding boxes generated from YOLO, and then separate touching pigs by analyzing the relations between the selected bounding boxes. Our experimental results show that the proposed method is more effective than widely-used methods for separating touching pigs, in terms of both accuracy and execution time.

Intelligent Mobile Surveillance System Based on Wireless Communication (무선통신에 기반한 지능형 이동 감시 시스템 개발)

  • Jang, Jae-Hyuk;Sim, Gab-Sig
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.2
    • /
    • pp.11-20
    • /
    • 2015
  • In this paper, we develop an intelligent mobile surveillance system based on binary CDMA for the unmanned automatic tracking and surveillance. That is, we implement a intelligent surveillance system using the binary CDMA wireless communication technology which is applied the merit of CDMA and TDMA on it complexly. This system is able to monitor the site of the accident on network in real time and process the various situations by implementing the security surveillance system. This system pursues an object by the 360-degree using camera, expands image using a PTZ(Pan/Tilt/Zoom) camera zooming function, identifies the mobile objects image within a screen and transfers the identified image to the remote site. Finally, we show the efficiency of the implemented system through the simulation of the controlled situations, such as tracking coverage on objects, object expansion, object detection number, monitoring the remote transferred image, number of frame per second by the image output signal etc..

Object detection and distance measurement system with sensor fusion (센서 융합을 통한 물체 거리 측정 및 인식 시스템)

  • Lee, Tae-Min;Kim, Jung-Hwan;Lim, Joonhong
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.232-237
    • /
    • 2020
  • In this paper, we propose an efficient sensor fusion method for autonomous vehicle recognition and distance measurement. Typical sensors used in autonomous vehicles are radar, lidar and camera. Among these, the lidar sensor is used to create a map around the vehicle. This has the disadvantage, however, of poor performance in weather conditions and the high cost of the sensor. In this paper, to compensate for these shortcomings, the distance is measured with a radar sensor that is relatively inexpensive and free of snow, rain and fog. The camera sensor with excellent object recognition rate is fused to measure object distance. The converged video is transmitted to a smartphone in real time through an IP server and can be used for an autonomous driving assistance system that determines the current vehicle situation from inside and outside.

3D Reconstruction of Structure Fusion-Based on UAS and Terrestrial LiDAR (UAS 및 지상 LiDAR 융합기반 건축물의 3D 재현)

  • Han, Seung-Hee;Kang, Joon-Oh;Oh, Seong-Jong;Lee, Yong-Chang
    • Journal of Urban Science
    • /
    • v.7 no.2
    • /
    • pp.53-60
    • /
    • 2018
  • Digital Twin is a technology that creates a photocopy of real-world objects on a computer and analyzes the past and present operational status by fusing the structure, context, and operation of various physical systems with property information, and predicts the future society's countermeasures. In particular, 3D rendering technology (UAS, LiDAR, GNSS, etc.) is a core technology in digital twin. so, the research and application are actively performed in the industry in recent years. However, UAS (Unmanned Aerial System) and LiDAR (Light Detection And Ranging) have to be solved by compensating blind spot which is not reconstructed according to the object shape. In addition, the terrestrial LiDAR can acquire the point cloud of the object more precisely and quickly at a short distance, but a blind spot is generated at the upper part of the object, thereby imposing restrictions on the forward digital twin modeling. The UAS is capable of modeling a specific range of objects with high accuracy by using high resolution images at low altitudes, and has the advantage of generating a high density point group based on SfM (Structure-from-Motion) image analysis technology. However, It is relatively far from the target LiDAR than the terrestrial LiDAR, and it takes time to analyze the image. In particular, it is necessary to reduce the accuracy of the side part and compensate the blind spot. By re-optimizing it after fusion with UAS and Terrestrial LiDAR, the residual error of each modeling method was compensated and the mutual correction result was obtained. The accuracy of fusion-based 3D model is less than 1cm and it is expected to be useful for digital twin construction.