• 제목/요약/키워드: real time feedback

검색결과 623건 처리시간 0.029초

힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정 (Cellular Force Sensing for Force Feedback-Based Biological Cell Injection)

  • 김덕호;윤석;강현재;김병규
    • 대한기계학회논문집A
    • /
    • 제27권12호
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정 (Cellular Force Measurement for Force Feedback-Based Biomanipulation)

  • 김덕호;김병규;윤석;강현재
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

DSP보드를 이용한 뇌파의 외부잡음 제거용 적응필터 및 피드백 출력제어 알고리듬 (The Adaptive Filter for EEG Artifact Cancellation and the Feedback Output Control Algorithm on the DSP Board)

  • 안보섭;박정제;이경일;박일용;조진호;김명남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.548-551
    • /
    • 2003
  • The adaptive filter is proposed for removing EOG from measured EEG on the frontal lobe. The proposed adaptive filter has been implemented and the feedback output control algorithm has been employed to control the alpha wave ratio on the basis of TMS320C31 DSP board with the on-line and real time performance. The feedback algorithm controls the input voltage of stimulating devices on the portable bio-feedback system. The EEG data are acquired at the $F_{p1}$ and $F_{p2}$ localization and are processed by the proposed adaptive filter. We demonstrated that the proposed adaptive filter could effectively remove EOG from the measured EEG on the frontal lobe and the feedback algorithm is proper to control the output voltage of DSP board using the ratio of the alpha wave.

  • PDF

네트워크를 이용한 실시간 분산제어시스템에서 데이터 샘플링 주기 결정 알고리듬 (An Algorithm of Determining Data Sampling Times in the Network-Based Real-Time Distributed Control Systems)

  • Seung Ho Hong
    • 전자공학회논문지B
    • /
    • 제30B권1호
    • /
    • pp.18-28
    • /
    • 1993
  • Processes in the real-time distributed control systems share a network medium to exchange their data. Performance of feedback control loops in the real-time distributed control systems is subject to the network-induced delays from sensor to controller, and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of control components which share a network medium. In this study, an algorithm of determining data sampling times is developed using the "window concept". where the sampling datafrom the control components dynamically share a limited number of windows. The scheduling algorithm is validated through the aimulation experiments.

  • PDF

차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발 (Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study)

  • 이승준
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

스마트 도시 실현을 위한 디지털 트윈 기술 동향 (Technology Trends in Digital Twins for Smart Cities)

  • 장윤섭;장인성
    • 전자통신동향분석
    • /
    • 제36권1호
    • /
    • pp.99-108
    • /
    • 2021
  • Digital twins are digital replicas of objects and systems in the real world. These digital replicas in a virtual environment can be connected with smart sensors and a variety of analyses, and simulations of real-time data from these sensors enable effective the operation, rapid feedback, and future predictions of real world phenomena. Until now, digital twins have been adopted and used mainly in the field of manufacturing, especially for smart factories. As digital twins are expected to be useful not only for productivity improvement but also for social problem solving, it is predicted that they will be extended to other fields such as those of transportation and cities. Digital twins will especially help realize smart cities through real-time monitoring, operation, and predictions using virtual digital twin cities. This paper summarizes the trends in digital twins for smart cities, the concept of digital twins, their application to smart cities, the strategies of various countries, and the development status of companies.

마이크로컴퓨터를 이용한 최적축 위치제어

  • 조용현
    • ETRI Journal
    • /
    • 제6권2호
    • /
    • pp.3-9
    • /
    • 1984
  • This paper proposes an optimal control scheme for shaft position control using microcomputer-based state-variable feedback. In this scheme a performance index was set up in order to ruduce the overshoot and improve the steady- state response speed, and the time-variant system parameters were identified in real time for optimal control. As a result of experiment, the over-shoot was not occured and the response speed was improved 2. 9 times about proportional control. This scheme improves the performance against the variation of load and sampling time, and adding the integral control in this scheme can reduce the steady-state error without any change in response time.

  • PDF

스테레오 비전정보를 사용한 휴머노이드 로봇 팔 ROBOKER의 동적 물체 추종제어 구현 및 실험 (Implementation and Experimentation of Tracking Control of a Moving Object for Humanoid Robot Arms ROBOKER by Stereo Vision)

  • 이운규;김동민;최호진;김정섭;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.998-1004
    • /
    • 2008
  • In this paper, a visual servoing control technique of humanoid robot arms is implemented for tracking a moving object. An embedded time-delayed controller is designed on an FPGA(Programmable field gate array) chip and implemented to control humanoid robot arms. The position of the moving object is detected by a stereo vision camera and converted to joint commands through the inverse kinematics. Then the robot arm performs visual servoing control to track a moving object in real time fashion. Experimental studies are conducted and results demonstrate the feasibility of the visual feedback control method for a moving object tracking task by the humanoid robot arms called the ROBOKER.

Adaptive Fault-Tolerant Dynamic Output Feedback Control for a Class of Linear Time-Delay Systems

  • Ye, Dan;Yang, Guang-Hong
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권2호
    • /
    • pp.149-159
    • /
    • 2008
  • This paper considers the problem of adaptive fault-tolerant guaranteed cost controller design via dynamic output feedback for a class of linear time-delay systems against actuator faults. A new variable gain controller is established, whose gains are tuned by the designed adaptive laws. More relaxed sufficient conditions are derived in terms of linear matrix inequalities (LMIs), compared with the corresponding fault-tolerant controller with fixed gains. A real application example about river pollution process is presented to show the effectiveness of the proposed method.

다이아몬드 터닝 머시인의 극초정밀 절삭공정에서의 시스템 규명 및 제어 (System identification and admittance model-based nanodynamic control of ultra-precision cutting process)

  • 정상화;김상석;오용훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1352-1355
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surface. However, as the accuracy requirement gets tighter and desired surface contours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated depth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in addition to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamometer. Based on the parameter estimation of cutting dynamics and the admittance model-based nanodynamic control scheme, simulation results are shown.

  • PDF