• Title/Summary/Keyword: real forest

Search Result 334, Processing Time 0.025 seconds

Study on water quality prediction in water treatment plants using AI techniques (AI 기법을 활용한 정수장 수질예측에 관한 연구)

  • Lee, Seungmin;Kang, Yujin;Song, Jinwoo;Kim, Juhwan;Kim, Hung Soo;Kim, Soojun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.3
    • /
    • pp.151-164
    • /
    • 2024
  • In water treatment plants supplying potable water, the management of chlorine concentration in water treatment processes involving pre-chlorination or intermediate chlorination requires process control. To address this, research has been conducted on water quality prediction techniques utilizing AI technology. This study developed an AI-based predictive model for automating the process control of chlorine disinfection, targeting the prediction of residual chlorine concentration downstream of sedimentation basins in water treatment processes. The AI-based model, which learns from past water quality observation data to predict future water quality, offers a simpler and more efficient approach compared to complex physicochemical and biological water quality models. The model was tested by predicting the residual chlorine concentration downstream of the sedimentation basins at Plant, using multiple regression models and AI-based models like Random Forest and LSTM, and the results were compared. For optimal prediction of residual chlorine concentration, the input-output structure of the AI model included the residual chlorine concentration upstream of the sedimentation basin, turbidity, pH, water temperature, electrical conductivity, inflow of raw water, alkalinity, NH3, etc. as independent variables, and the desired residual chlorine concentration of the effluent from the sedimentation basin as the dependent variable. The independent variables were selected from observable data at the water treatment plant, which are influential on the residual chlorine concentration downstream of the sedimentation basin. The analysis showed that, for Plant, the model based on Random Forest had the lowest error compared to multiple regression models, neural network models, model trees, and other Random Forest models. The optimal predicted residual chlorine concentration downstream of the sedimentation basin presented in this study is expected to enable real-time control of chlorine dosing in previous treatment stages, thereby enhancing water treatment efficiency and reducing chemical costs.

'The Same Scenery' and 'a Different Landscape' Included in "Real-Scenery Landscape Painting", an Essay to Determine Meaning - Centering around Paintings of Chong Seok Jeong in the 18th-19th Centuries - (실경산수화에 담긴 '같은 경관' 그러나 '다른 풍경', 그 의미 찾기 - 18.19C 총석정 그림을 중심으로 -)

  • Rho, Jae-Hyun;Jang, Il-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.5
    • /
    • pp.82-93
    • /
    • 2008
  • This research focused on the process in which 'the same scenery' is recognized and represented as 'a different landscape' to determine the symbols and meaning of the scenery and landscape included in real-scenery landscape paintings of the 18th-19th centuries. As a result of analyzing the visual points, the content and expressions of 25 real-scenery landscape paintings of Chong Seok Jeong(叢石亭), it can be seen that the transmission of a kind of semiotic landscape on the basis of a specific symbol was accomplished naturally through imitation and representation for the purpose of the expression of Chong Seok Jeong-like idealized scenery. This shows that the unique images of Chong Seok Jeong have long been passed down after taking root as a unique benchmark The meaningful symbol of 'a strange Saseonbong(四仙峰)', which is broken by the spray after rising high, and 'a pine forest' have both been transmitted as being in the manner of Chong Seok Jeong. This has been equipped with the stereo-type scene by being a collective symbolization as the psycho-scenes in memory element of Chong Seok Jeong. Through the pictures of both Gyeomjae(謙齋) and Danweon(檀園), the process by which a specific painter's pictures become acculturated is highly interesting. The scenery expressed in these pictures was clearly that of a landscape of which its particularly emotions and remembrances were repainted through the experience of several places and original sketches. This can be explained as the concept in which the image from 'a specific scenery' gained through actual experience, that is, a personal feeling, has been expressed. The picture that was expressed as a different figure even at the same visual point for the same scenery is the result that was redefined through the scenery subject's recognition. Also, the modification of the scenery object can be colorful through meditation and Sachu(邪推: guessing with wicked doubt). The scenery recognized newly through adoption, omission and emphasis, it is 'the specific scenery' in the heart and is a figure having been more similar to 'a landscape' if the objective life reproduction before being acculturated is a figure similar to the scenery. So, the concept looks like being very persuasive that 'the nature with objectivity captured sensuously' simply is the scenery, and that 'the subjective phenomenon having acquired the cultural nature by being introspected in the method of aesthetic nostalgia is a landscape'.

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: 2. Refining the Distribution of Precipitation Amount (기상청 동네예보의 영농활용도 증진을 위한 방안: 2. 강수량 분포 상세화)

  • Kim, Dae-Jun;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.15 no.3
    • /
    • pp.171-177
    • /
    • 2013
  • The purpose of this study is to find a scheme to scale down the KMA (Korea Meteorological Administration) digital precipitation maps to the grid cell resolution comparable to the rural landscape scale in Korea. As a result, we suggest two steps procedure called RATER (Radar Assisted Topography and Elevation Revision) based on both radar echo data and a mountain precipitation model. In this scheme, the radar reflection intensity at the constant altitude of 1.5 km is applied first to the KMA local analysis and prediction system (KLAPS) 5 km grid cell to obtain 1 km resolution. For the second step the elevation and topography effect on the basis of 270 m digital elevation model (DEM) which represented by the Parameter-elevation Regressions on Independent Slopes Model (PRISM) is applied to the 1 km resolution data to produce the 270 m precipitation map. An experimental watershed with about $50km^2$ catchment area was selected for evaluating this scheme and automated rain gauges were deployed to 13 locations with the various elevations and slope aspects. 19 cases with 1 mm or more precipitation per day were collected from January to May in 2013 and the corresponding KLAPS daily precipitation data were treated with the second step procedure. For the first step, the 24-hour integrated radar echo data were applied to the KLAPS daily precipitation to produce the 1 km resolution data across the watershed. Estimated precipitation at each 1 km grid cell was then regarded as the real world precipitation observed at the center location of the grid cell in order to derive the elevation regressions in the PRISM step. We produced the digital precipitation maps for all the 19 cases by using RATER and extracted the grid cell values corresponding to 13 points from the maps to compare with the observed data. For the cases of 10 mm or more observed precipitation, significant improvement was found in the estimated precipitation at all 13 sites with RATER, compared with the untreated KLAPS 5 km data. Especially, reduction in RMSE was 35% on 30 mm or more observed precipitation.

Applications of "High Definition Digital Climate Maps" in Restructuring of Korean Agriculture (한국농업의 구조조정과 전자기후도의 역할)

  • Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The use of information on natural resources is indispensable to most agricultural activities to avoid disasters, to improve input efficiency, and to increase lam income. Most information is prepared and managed at a spatial scale called the "Hydrologic Unit" (HU), which means watershed or small river basin, because virtually every environmental problem can be handled best within a single HU. South Korea consists of 840 such watersheds and, while other watershed-specific information is routinely managed by government organizations, there are none responsible for agricultural weather and climate. A joint research team of Kyung Hee University and the Agriculture, forestry and Fisheries Information Service has begun a 4-year project funded by the Ministry of Agriculture and forestry to establish a watershed-specific agricultural weather information service based on "high definition" digital climate maps (HD-DCMs) utilizing the state of the art geospatial climatological technology. For example, a daily minimum temperature model simulating the thermodynamic nature of cold air with the aid of raster GIS and microwave temperature profiling will quantify effects of cold air drainage on local temperature. By using these techniques and 30-year (1971-2000) synoptic observations, gridded climate data including temperature, solar irradiance, and precipitation will be prepared for each watershed at a 30m spacing. Together with the climatological normals, there will be 3-hourly near-real time meterological mapping using the Korea Meteorological Administration's digital forecasting products which are prepared at a 5 km by 5 km resolution. Resulting HD-DCM database and operational technology will be transferred to local governments, and they will be responsible for routine operations and applications in their region. This paper describes the project in detail and demonstrates some of the interim results.

Prospective for Successful IT in Agriculture (일본 농업분야 정보기술활용 성공사례와 전망)

  • Seishi Ninomiya;Byong-Lyol Lee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.107-117
    • /
    • 2004
  • If doubtlessly contributes much to agriculture and rural development. The roles can be summarized as; 1. to activate rural areas and to provide more comfortable and safe rural life with equivalent services to those in urban areas, facilitating distance education, tole-medicine, remote public services, remote entertainment etc. 2. To initiate new agricultural and rural business such as e-commerce, real estate business for satellite officies, rural tourism and virtual corporation of small-scale farms. 3. To support policy-making and evaluation on optimal farm production, disaster management, effective agro-environmental resource management etc., providing tools such as GIS. 4. To improve farm management and farming technologies by efficient farm management, risk management, effective information or knowledge transfer etc., realizing competitive and sustainable farming with safe products. 5. To provide systems and tools to secure food traceability and reliability that has been an emerging issue concerning farm products since serious contamination such as BSE and chicken flu was detected. 6. To take an important and key role for industrialization of farming or lam business enterprise, combining the above roles.

Status of Agrometeorological Information and Dissemination Networks (농업기상 정보 및 배분 네트워크 현황)

  • Jagtap, Shrikant;Li, Chunqiang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.6 no.2
    • /
    • pp.71-84
    • /
    • 2004
  • There is a growing demand for agrometeorological information that end-users can use and not just interesting information. lo achieve this, each region/community needs to develop and provide localized climate and weather information for growers. Additionally, provide tools to help local users interpret climate forecasts issued by the National Weather Service in the country. Real time information should be provided for farmers, including some basic data. An ideal agrometeorological information system includes several components: an efficient data measuring and collection system; a modern telecommunication system; a standard data management processing and analysis system; and an advanced technological information dissemination system. While it is conventional wisdom that, Internet is and will play a major role in the delivery and dissemination of agrometeorological information, there are large gaps between the "information rich" and the "information poor" countries. Rural communities represent the "last mile of connectivity". For some time to come, TV broadcast, radio, phone, newspaper and fax will be used in many countries for communication. The differences in achieving this among countries arise from the human and financial resources available to implement this information and the methods of information dissemination. These differences must be considered in designing any information dissemination system. Experience shows that easy across to information more tailored to user needs would substantially increase use of climate information. Opportunities remain unexplored for applications of geographical information systems and remote sensing in agro meteorology.e sensing in agro meteorology.

Estimation of Fresh Weight, Dry Weight, and Leaf Area Index of Soybean Plant using Multispectral Camera Mounted on Rotor-wing UAV (회전익 무인기에 탑재된 다중분광 센서를 이용한 콩의 생체중, 건물중, 엽면적 지수 추정)

  • Jang, Si-Hyeong;Ryu, Chan-Seok;Kang, Ye-Seong;Jun, Sae-Rom;Park, Jun-Woo;Song, Hye-Young;Kang, Kyeong-Suk;Kang, Dong-Woo;Zou, Kunyan;Jun, Tae-Hwan
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.327-336
    • /
    • 2019
  • Soybean is one of the most important crops of which the grains contain high protein content and has been consumed in various forms of food. Soybean plants are generally cultivated on the field and their yield and quality are strongly affected by climate change. Recently, the abnormal climate conditions, including heat wave and heavy rainfall, frequently occurs which would increase the risk of the farm management. The real-time assessment techniques for quality and growth of soybean would reduce the losses of the crop in terms of quantity and quality. The objective of this work was to develop a simple model to estimate the growth of soybean plant using a multispectral sensor mounted on a rotor-wing unmanned aerial vehicle(UAV). The soybean growth model was developed by using simple linear regression analysis with three phenotypic data (fresh weight, dry weight, leaf area index) and two types of vegetation indices (VIs). It was found that the accuracy and precision of LAI model using GNDVI (R2= 0.789, RMSE=0.73 ㎡/㎡, RE=34.91%) was greater than those of the model using NDVI (R2= 0.587, RMSE=1.01 ㎡/㎡, RE=48.98%). The accuracy and precision based on the simple ratio indices were better than those based on the normalized vegetation indices, such as RRVI (R2= 0.760, RMSE=0.78 ㎡/㎡, RE=37.26%) and GRVI (R2= 0.828, RMSE=0.66 ㎡/㎡, RE=31.59%). The outcome of this study could aid the production of soybeans with high and uniform quality when a variable rate fertilization system is introduced to cope with the adverse climate conditions.

Quality Control of Agro-meteorological Data Measured at Suwon Weather Station of Korea Meteorological Administration (기상청 수원기상대 농업기상 관측요소의 품질관리)

  • Oh, Gyu-Lim;Lee, Seung-Jae;Choi, Byoung-Choel;Kim, Joon;Kim, Kyu-Rang;Choi, Sung-Won;Lee, Byong-Lyol
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.1
    • /
    • pp.25-34
    • /
    • 2015
  • In this research, we applied a procedure of quality control (QC) to the agro-meteorological data measured at the Suwon weather station of Korea Meteorological Administration (KMA). The QC was conducted through six steps based on the KMA Real-time Quality control system for Meteorological Observation Data (RQMOD) and four steps based on the International Soil Moisture Network (ISMN) QC modules. In addition, we set up our own empirical method to remove erroneous data which could not be filtered by the RQMOD and ISMN methods. After all these QC procedures, a well-refined agro-meteorological dataset was complied at both air and soil temperatures. Our research suggests that soil moisture requires more detailed and reliable grounds to remove doubtful data, especially in winter with its abnormal variations. The raw data and the data after QC are now available at the NCAM website (http://ncam.kr/page/req/agri_weather.php).

Establishment of Geospatial Schemes Based on Topo-Climatology for Farm-Specific Agrometeorological Information (농장맞춤형 농업기상정보 생산을 위한 소기후 모형 구축)

  • Kim, Dae-Jun;Kim, Soo-Ock;Kim, Jin-Hee;Yun, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.146-157
    • /
    • 2019
  • One of the most distinctive features of the South Korean rural environment is that the variation of weather or climate is large even within a small area due to complex terrains. The Geospatial Schemes based on Topo-Climatology (GSTP) was developed to simulate such variations effectively. In the present study, we reviewed the progress of the geospatial schemes for production of farm-scale agricultural weather data. Efforts have been made to improve the GSTP since 2000s. The schemes were used to provide climate information based on the current normal year and future climate scenarios at a landscape scale. The digital climate maps for the normal year include the maps of the monthly minimum temperature, maximum temperature, precipitation, and solar radiation in the past 30 years at 30 m or 270 m spatial resolution. Based on these digital climate maps, future climate change scenario maps were also produced at the high spatial resolution. These maps have been used for climate change impact assessment at the field scale by reprocessing them and transforming them into various forms. In the 2010s, the GSTP model was used to produce information for farm-specific weather conditions and weather forecast data on a landscape scale. The microclimate models of which the GSTP model consists have been improved to provide detailed weather condition data based on daily weather observation data in recent development. Using such daily data, the Early warning service for agrometeorological hazard has been developed to provide weather forecasts in real-time by processing a digital forecast and mid-term weather forecast data (KMA) at 30 m spatial resolution. Currently, daily minimum temperature, maximum temperature, precipitation, solar radiation quantity, and the duration of sunshine are forecasted as detailed weather conditions and forecast information. Moreover, based on farm-specific past-current-future weather information, growth information for various crops and agrometeorological disaster forecasts have been produced.

Classification Algorithm-based Prediction Performance of Order Imbalance Information on Short-Term Stock Price (분류 알고리즘 기반 주문 불균형 정보의 단기 주가 예측 성과)

  • Kim, S.W.
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.157-177
    • /
    • 2022
  • Investors are trading stocks by keeping a close watch on the order information submitted by domestic and foreign investors in real time through Limit Order Book information, so-called price current provided by securities firms. Will order information released in the Limit Order Book be useful in stock price prediction? This study analyzes whether it is significant as a predictor of future stock price up or down when order imbalances appear as investors' buying and selling orders are concentrated to one side during intra-day trading time. Using classification algorithms, this study improved the prediction accuracy of the order imbalance information on the short-term price up and down trend, that is the closing price up and down of the day. Day trading strategies are proposed using the predicted price trends of the classification algorithms and the trading performances are analyzed through empirical analysis. The 5-minute KOSPI200 Index Futures data were analyzed for 4,564 days from January 19, 2004 to June 30, 2022. The results of the empirical analysis are as follows. First, order imbalance information has a significant impact on the current stock prices. Second, the order imbalance information observed in the early morning has a significant forecasting power on the price trends from the early morning to the market closing time. Third, the Support Vector Machines algorithm showed the highest prediction accuracy on the day's closing price trends using the order imbalance information at 54.1%. Fourth, the order imbalance information measured at an early time of day had higher prediction accuracy than the order imbalance information measured at a later time of day. Fifth, the trading performances of the day trading strategies using the prediction results of the classification algorithms on the price up and down trends were higher than that of the benchmark trading strategy. Sixth, except for the K-Nearest Neighbor algorithm, all investment performances using the classification algorithms showed average higher total profits than that of the benchmark strategy. Seventh, the trading performances using the predictive results of the Logical Regression, Random Forest, Support Vector Machines, and XGBoost algorithms showed higher results than the benchmark strategy in the Sharpe Ratio, which evaluates both profitability and risk. This study has an academic difference from existing studies in that it documented the economic value of the total buy & sell order volume information among the Limit Order Book information. The empirical results of this study are also valuable to the market participants from a trading perspective. In future studies, it is necessary to improve the performance of the trading strategy using more accurate price prediction results by expanding to deep learning models which are actively being studied for predicting stock prices recently.