• Title/Summary/Keyword: reactor trip

Search Result 78, Processing Time 0.024 seconds

Development of Field Programmable Gate Array-based Reactor Trip Functions Using Systems Engineering Approach

  • Jung, Jaecheon;Ahmed, Ibrahim
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.1047-1057
    • /
    • 2016
  • Design engineering process for field programmable gate array (FPGA)-based reactor trip functions are developed in this work. The process discussed in this work is based on the systems engineering approach. The overall design process is effectively implemented by combining with design and implementation processes. It transforms its overall development process from traditional V-model to Y-model. This approach gives the benefit of concurrent engineering of design work with software implementation. As a result, it reduces development time and effort. The design engineering process consisted of five activities, which are performed and discussed: needs/systems analysis; requirement analysis; functional analysis; design synthesis; and design verification and validation. Those activities are used to develop FPGA-based reactor bistable trip functions that trigger reactor trip when the process input value exceeds the setpoint. To implement design synthesis effectively, a model-based design technique is implied. The finite-state machine with data path structural modeling technique together with very high speed integrated circuit hardware description language and the Aldec Active-HDL tool are used to design, model, and verify the reactor bistable trip functions for nuclear power plants.

Electric power frequency and nuclear safety - Subsynchronous resonance case study

  • Volkanovski, Andrija;Prosek, Andrej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.1017-1023
    • /
    • 2019
  • The increase of the alternate current frequency results in increased rotational speed of the electrical motors and connected pumps. The consequence for the reactor coolant pumps is increased flow in primary coolant system. Increase of the current frequency can be initiated by the subsynchronous resonance phenomenon (SSR). This paper analyses the implications of the SSR and consequential increase of the frequency on the nuclear power plant safety. The Simulink $MATLAB^{(R)}$ model of the steam turbine and governor system and RELAP5 computer code of the pressurized water reactor are used in the analysis. The SSR results in fast increase of reactor coolant pumps speed and flow in the primary coolant system. The turbine trip value is reached in short time following SSR. The increase of flow of reactor coolant pumps results in increase of heat removal from reactor core. This results in positive reactivity insertion with reactor power increase of 0.5% before reactor trip is initiated by the turbine trip. The main parameters of the plant did not exceed the values of reactor trip set points. The pressure drop over reactor core is small discarding the possibility of core barrel lift.

Study on the digitalization of trip equations including dynamic compensators for the Reactor Protection System in NPPs by using the FPGA

  • Kwang-Seop Son;Jung-Woon Lee;Seung-Hwan Seong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2952-2965
    • /
    • 2023
  • Advanced reactors, such as Small Modular Reactors or existing Nuclear Power Plants, often use Field Programmable Gate Array (FPGA) based controllers in new Instrumentation and Control (I&C) system architectures or as an alternative to existing analog-based I&C systems. Compared to CPU-based Programmable Logic Controllers (PLCs), FPGAs offer better overall performance. However, programming functions on FPGAs can be challenging due to the requirement for a hardware description language that does not explicitly support the operation of real numbers. This study aims to implement the Reactor Trip (RT) functions of the existing analog-based Reactor Protection System (RPS) using FPGAs. The RT equations for Overtemperature delta Temperature and Overpower delta Temperature involve dynamic compensators expressed with the Laplace transform variable, 's', which is not directly supported by FPGAs. To address this issue, the trip equations with the Laplace variable in the continuous-time domain are transformed to the discrete-time domain using the Z-transform. Additionally, a new operation based on a relative value for the equation range is introduced for the handling of real numbers in the RT functions. The proposed approach can be utilized for upgrading the existing analog-based RPS as well as digitalizing control systems in advanced reactor systems.

DEVELOPMENT OF THE DIGITALIZED AUTOMATIC SEISMIC TRIP SYSTEM FOR NUCLEAR POWER PLANTS USING THE SYSTEMS ENGINEERING APPROACH

  • Jung, Jae Cheon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.2
    • /
    • pp.235-246
    • /
    • 2014
  • The automatic seismic trip system (ASTS) continuously monitors PGA (peak ground acceleration) from the seismic wave, and automatically generates a trip signal. This work presents how the system can be designed by using a systems engineering approach under the given regulatory criteria. Overall design stages, from the needs analysis to design verification, have been executed under the defined processes and activities. Moreover, this work contributes two significant design areas for digitalized ASTS. These are firstly, how to categorize the ASTS if the ASTS has a backed up function of the manual reactor trip, and secondly, how to set the requirements using the given design practices either in overseas ASTS design or similar design. In addition, the methodology for determining the setpoint can be applied to the I&C design and development project which needs to justify the error sources correctly. The systematic approach that has been developed and realized in this work can be utilized in designing new I&C (instrument and control system) as well.

Initiating Event Selection and Analysis for Probabilistic Safety Assessment of Korea Research Reactor (국내 연구용원자로 PSA 수행을 위한 초기사건 선정 및 빈도 분석)

  • Lee, Yoon-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.101-110
    • /
    • 2021
  • This paper presents the results of an initiating event analysis as part of a Level 1 probabilistic safety assessment (PSA) for at-power internal events for the Korea Research Reactor (KRR). The PSA methodology is widely used to quantitatively assess the safety of research reactors (RRs) in the domestic nuclear industry. Initiating event frequencies are required to conduct a PSA, and they considerably affect the PSA results. Because there is no domestic database for domestic trip events, the safety of RRs is usually assessed using foreign databases. In this paper, operating experience data from the KRR for trip events were collected and analyzed in order to determine the frequency of specific initiating events. These frequencies were calculated using two approaches according to the event characteristics and data availability: (1) based on KRR operating experience or (2) using generic data.

Reactor Power Cutback Feasibility to a 12-Finger CEA Drop to Avoid Reactor Trips

  • Auh, Geun-Sun;Yoo, Hyung-Keun;Lim, Chae-Joon;Kim, Hee-Cheol;Lee, Sang-Keun
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.96-104
    • /
    • 1995
  • EPRI URD requires that the reactor be capable of accommodating an unintended CEA drop without initiating a trip and operating at a reduced power with ay single CEA fully inserted. YGN 3 and 4 reactors have 12-finger CEAs, and the CPCS will trip the reactor due to their large reactivities when one of them is dropped at a high power. The ABB-CE reactor power cutback system has been proposed to be used against the 12-Finger CEA drop to avoid the reactor trips. The results of study show that the reactor power cutback can prevent the reactor trips of the 12-Finger CEA drop when the CPCS has enough operating thermal margin (more than 9% for YGN 3&4 Cycle 1). It is noted, however, that the probability of a 12-Finger CEA drop is very low, less than one per 100 reactor years for YGN 3& and System 80$^{+}$ plants.

  • PDF

Concept Development of Core Protection Calculator with Trip Avoidance Function using Systems Engineering

  • Nascimento, Thiago;Jung, Jae Cheon
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.2
    • /
    • pp.47-58
    • /
    • 2020
  • Most of the reactor trips in Korean NPPs related to core protection systems were caused not because of proximity of boiling crisis and, consequently, a damage in the core, but due to particular miscalculations or component failures related to the core protection system. The most common core protection system applied in Korean NPPs is the Core Protection Calculator System (CPCS), which is installed in OPR1000 and APR1400 plants. It generates a trip signal to scram the reactor in case of low Departure from Nucleate Boiling Ratio (DNBR) or high Local Power Density (LPD). However, is a reactor trip necessary to protect the core? Or could a fast power reduction be enough to recover the DNBR/LPD without a scram? In order to analyze the online calculation of DNBR/LPD, and the use of fast power reduction as trip avoidance methodology, a concept of CPCS with fast power reduction function was developed in Matlab® Simulink using systems engineering approach. The system was validated with maximum of 0.2% deviation from the reference and the dynamic deviation was maximum of 12.65% for DNBR and 6.72% for LPD during a transient of 16,000 seconds.

TASK TYPES AND ERROR TYPES INVOLVED IN THE HUMAN-RELATED UNPLANNED REACTOR TRIP EVENTS

  • Kim, Jaew-Han;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.615-624
    • /
    • 2008
  • In this paper, the contribution of task types and error types involved in the human-related unplanned reactor trip events that have occurred between 1986 and 2006 in Korean nuclear power plants are analysed in order to establish a strategy for reducing the human-related unplanned reactor trips. Classification systems for the task types, error modes, and cognitive functions are developed or adopted from the currently available taxonomies, and the relevant information is extracted from the event reports or judged on the basis of an event description. According to the analyses from this study, the contributions of the task types are as follows: corrective maintenance (25.7%), planned maintenance (22.8%), planned operation (19.8%), periodic preventive maintenance (14.9%), response to a transient (9.9%), and design/manufacturing/installation (6.9%). According to the analysis of the error modes, error modes such as control failure (22.2%), wrong object (18.5%), omission (14.8%), wrong action (11.1 %), and inadequate (8.3%) take up about 75% of the total unplanned trip events. The analysis of the cognitive functions involved in the events indicated that the planning function had the highest contribution (46.7%) to the human actions leading to unplanned reactor trips. This analysis concludes that in order to significantly reduce human-induced or human-related unplanned reactor trips, an aide system (in support of maintenance personnel) for evaluating possible (negative) impacts of planned actions or erroneous actions as well as an appropriate human error prediction technique, should be developed.

OPΔT and OTΔT Trip Setpoint Generation Methodology (OPΔT 및 OTΔT트립설정치의 생산방법)

  • Ki In Han
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 1984
  • Core safety limits define reactor operating conditions and parameters that will assure fuel rod and reactor system's integrity. Limiting safety system settings (LSSS) programmed into reactor protection system (RPS) then ensure a rapid reactor trip to prevent or suppress conditions which might violate the core safety limits. Generation of the LSSS must properly take into account uncertainties in both calculated and measured parameters in order to assure, with an appropriate degree of confidence, that the RPS will protect the core safety limits. Reviewed in this report are Westinghouse RPS setpoint generation philosophy, methodology of safety limit development and LSSS generation procedure. The Westinghouse RPS trip setpoint generation methodology has been established based on the calculation of core safety limits and the selection of LSSS allowing appropriate uncertainties in a conservative manner. Such conservative values of setpoint assure a high degree of core protection against fuel melting and occurrence of DNB.

  • PDF

NUMERICAL ANALYSIS OF THERMAL STRATIFICATION IN THE UPPER PLENUM OF THE MONJU FAST REACTOR

  • Choi, Seok-Ki;Lee, Tae-Ho;Kim, Yeong-Il;Hahn, Dohee
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.191-202
    • /
    • 2013
  • A numerical analysis of thermal stratification in the upper plenum of the MONJU fast breeder reactor was performed. Calculations were performed for a 1/6 simplified model of the MONJU reactor using the commercial code, CFX-13. To better resolve the geometrically complex upper core structure of the MONJU reactor, the porous media approach was adopted for the simulation. First, a steady state solution was obtained and the transient solutions were then obtained for the turbine trip test conducted in December 1995. The time dependent inlet conditions for the mass flow rate and temperature were provided by JAEA. Good agreement with the experimental data was observed for steady state solution. The numerical solution of the transient analysis shows the formation of thermal stratification within the upper plenum of the reactor vessel during the turbine trip test. The temporal variations of temperature were predicted accurately by the present method in the initial rapid coastdown period (~300 seconds). However, transient numerical solutions show a faster thermal mixing than that observed in the experiment after the initial coastdown period. A nearly homogenization of the temperature field in the upper plenum is predicted after about 900 seconds, which is a much shorter-term thermal stratification than the experimental data indicates. This discrepancy may be due to the shortcoming of the turbulence models available in the CFX-13 code for a natural convection flow with thermal stratification.