• 제목/요약/키워드: reactor material

Search Result 832, Processing Time 0.028 seconds

Economic Evaluation of a Crush-screen Hybrid Pretreatment Process for Waste Vinyl (폐비닐의 파쇄/선별 융합 전처리 공정의 경제성 평가)

  • Seo, Su Been;Cho, Il Ho;Yun, Hyun Pyo;Kang, Seo Yeong;Kim, Hyung Woo;Lee, See Hoon
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.289-295
    • /
    • 2019
  • Though the usage of vinyls and plastics produced from fossil fuels has been increasing in the world, the eco-friendly domestic disposal or recycling of waste vinyls has to be executed because the migration or importation of waste vinyls or waste plastics are globally prohibited. Even though the eco-friendly domestic disposal or recycling of waste vinyls and waste plastics should be developed, promising eco-friendly recycling methods are few because there are extraneous substances in waste vinyls and waste plastics. Also, conventional incineration and landfill methods result in secondary contamination and then increase disposal costs. Therefore, the selective elimination of extraneous substances or other materials included in waste vinyls and waste plastics could make valuable recycling or reuse possible. In particular, the novel hybrid process in which crushing and screening are simultaneously conducted in a rotary kiln type reactor can domestically maximize the material recycling or reuse. In this study, the feasibility study for a crushing/screening hybrid process developed in Korea was performed and evaluated in case of thermal recycling (TR) and material recycling (MR). The effect of various subsidies on economic efficiency was especially evaluated by means of domestic recycling plans. The incentive revenues from waste vinyl recycling and the incineration share of waste vinyls affected the net present values and internal rate of returns of the hybrid process.

Study on Electroluminescence of the Phosphorescent Iridium(III) Complex Prepared by Ultrasonic Wave (초음파 합성법을 이용한 이리듐계 인광 물질 합성과 합성된 인광 물질의 전계 발광 특성 분석)

  • Yu, Hong-Jeong;Chung, Won-Keun;Chun, Byung-Hee;Kim, Sung-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.325-329
    • /
    • 2011
  • $Ir(pmb)_{3}$(Iridium(III)Tri(1-phenyl-3-methylbenzimidazolin-2-ylidene-$C,C^{2'}$ ) was synthesized to develop a deep blue-emitting Ir(III) complex. We suggested the ultrasonic reactor to enhance the poor reaction yield of $Ir(pmb)_{3}$. The ultrasonic wave enhanced the reaction yield of $Ir(pmb)_{3}$ because the ultrasound helped non-soluble reactants disperse efficiently and produced free radial during the reaction. The maximum yield of $Ir(pmb)_{3}$ was 42.5%, which was 4 times higher than conventional method. Organic light emitting devices were fabricated with the synthesized mer-$Ir(pmb)_{3}$ which emitted at 405 nm. A range of host materials with large bandgaps (UGH2, mCP and CBP) were tested for developing a deep blue emitting device. In case of the device with mCP as the host material, it emitted deep blue and performed quite well relative to the other host materials tested.

Study on the Sinterability and Pellet Properties of Dy2O3-TiO2 Oxides (Dy2O3-TiO2 산화물의 소결성 및 소결체 특성에 관한 연구)

  • Kim, Han-Soo;Joung, Chang-Yong;Kim, Si-Hyung;Lee, Byoung-Ho;Lee, Young-Woo;Sohn, Dong-Seong;Lee, Sang-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1108-1112
    • /
    • 2002
  • pellets were fabricated as a reactor control material by the powder process. Sinterability of $Dy_2O_3+TiO_2$ mixtures and phases of solid solutions were analyzed by using TMA and XRD, respectively. The thermal conductivity of pellet was determined from the measurement data of the specific heat and the thermal diffusivity of the pellet. The sinterability and the sintered density varied as a function of Dy content in $Dy_xTi_yO_z$. The pellet of $3\;g\;Dy/cm^3\;Dy_xTi_yO_z$ melted in the sintering temperature of $1580{\circ}C$. There were two phases of $Dy_2TiO_5+Dy_2Ti_2O_7$ and a single phase of $Dy_2TiO_5$ for the pellet that has the Dy content of and , respectively. The thermal conductivity of $Dy_xTi_yO_z$ was nearly constant in the temperature range of $25~600{\circ}$. It was 1.69~1.78 W/mK for the pellet sintered in and 1.49~1.55 W/mK for the pellet sintered in $1550{\circ}$.

Slurry Phase Decomposition of Food Waste by Using Various Microorganisms (미생물을 이용한 액상소멸방식의 음식물쓰레기 처리)

  • Kwon, Bum Gun;Na, Suk-Hyun;Lim, Hye-Jung;Lim, Chae-Sung;Chung, Seon-Yong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.5
    • /
    • pp.303-310
    • /
    • 2014
  • This study investigated the reduction of food waste through the slurry phase decomposition in a source of food waste by microorganisms. The reactor used in the experiment was composed of both woodchip with wood material and sponges with polyurethane material as media of attached microorganisms, and food waste was mixed with a constant cycle consisted of a stirring device. During the experimental period of 100 days, the change in weight over the cumulative total amount of food waste added was reduced by 99%. Approximately, 1% of the residual food waste could be inherently recalcitrant materials (cellulose, hemicellulose, lignin, etc.) and thus was thought to be the result of the accumulation. The initial pH in wastewater generated from food waste was low with 3.3 and after 24 hours treatment this pH was increased to 5.8. The concentrations of COD, BOD, SS, salinity, TN and TP were gradually decreased. Food waste decay was proceeded by the seven species microorganisms identified and confirmed in this study, making a slurry phase and thus reducing residual food wastes. In the initial phase, the microbial population was approximately $3.3{\times}10^4$ cell/mL, and after 15 days this population was a constant with $5.1{\times}10^6$ cell/mL which means a certain stabilization for the reduction of food wastes. From these results, it can be considered that organic matter decomposition as well as the weight loss of food wastes by microorganisms is done at the same time.

Core Technologies Derivation of Fusion DEMO Reactor Applying TRL and AHP (TRL과 AHP를 적용한 핵융합 실증로 핵심기술 도출)

  • CHANG, Hansoo;KIM, Youbean;CHOI, Wonjae;THO, Hyunsoo
    • Journal of Technology Innovation
    • /
    • v.22 no.4
    • /
    • pp.145-164
    • /
    • 2014
  • Nuclear fusion is one of the most promising options for generating large amounts of carbon-free energy in the future. Major countries such as China, EU, and Japan have established a national plan for DEMO construction and they are implementing it. Korea has started a nuclear fusion research and development by the KSTAR project started in 1995. There are matured needs for a full-scale research and development initiatives to ensure competition with the major countries for DEMO as well as achieve the final goal to commercialize fusion energy. In this paper, we apply the TRL and AHP methods in order to identify the key technologies to conduct DEMO R&D. We propose the priorities of future R&D on DEMO by deriving a core technology in the field. At first, we review the scientific theory of fusion and trend of progress of DEMO activities in major countries. For previous studies, we review TRL and AHP methods to examine the technology classification system of DEMO and identify key technologies. We apply TRL method to identify readiness level of DEMO technologies and AHP to compensate shortcoming of TRL. The key technologies of DEMO to be secured from a synthesis result of the TRL and AHP are burning plasma, plasma facing material, structural material, high frequency heating, neutral particle beam, safety, plasma diagnostic, and simulation technologies.

Synthesis of Butenes through Butanol Dehydration over Catalyst Prepared from Water Treatment Sludge (정수 슬러지로부터 제조된 촉매 상에서 부탄올 탈수반응을 통한 부텐 제조)

  • Kim, Goun;Bae, Junghyun;Choi, Hyeonhee;Lee, Choul-Ho;Jeon, Jong-Ki
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.121-126
    • /
    • 2015
  • The objective of this study is to evaluate the catalytic potential of the porous material prepared from water treatment sludge. The textural properties of the catalyst were studied using $N_2$ adsorption and desorption isotherms, scanning electron microscope, and X-ray diffraction. The pellet-type catalyst prepared using water treatment sludge is determined to be a material that contains mesopores as well as micropores. The specific surface area of the catalyst is $157m^2/g$. Acidic characteristics of the catalyst are analyzed by temperature-programmed desorption of ammonia and infrared spectroscopy of adsorbed pyridine. 2-Butanol dehydration reaction was carried out in a fixed bed catalytic reactor. Yields of 1-butene, trans-2-butene, and cis-2-butene at $350^{\circ}C$ were 25.6 wt%, 19.2 wt%, and 29.9 wt%, respectively. This catalytic activity of the catalyst based on water treatment sludge in 2-butanol dehydration is due to the acid sites composed of Bronsted acid sites and Lewis acid sites. It was confirmed that the catalyst based on water treatment sludge can be utilized to produce $C_4$ olefin through butanol dehydration.

Degradation Properties and Production of Fuels from Hemicellulose by Pyrolysis-liquefaction (열분해액화반응에 의한 헤미셀룰로오스의 분해특성 및 연료물질 생성)

  • Lee, Jong-Jib
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.199-204
    • /
    • 2008
  • Hemicellulose, consisteing of pentose as xylose and mannose, is usable as high octane fuels and heavy oil additives if depolymerized to monomer unit. In this study, thermochemical degradation by pyrolysis-liquefaction of hemicellulose, the effects of reaction temperature, conversion yield, degradation properties and degradation products were investigated. Experiments were performed in a tube reactor by varying reaction temperatures from $200^{\circ}C$ to $400^{\circ}C$ at 40 min of reaction time. The liquid products from pyrolysis-liquefaction of hemicellulose contained various kinds of ketones. Ketones, as 2,3-dimethyl-2-cyclopenten-1-one, 2,3,4-trimethyl-2-cyclopentan-1-one, and 2-methyl-cyclopentanone, could be used as high-octane-value fuels and fuel additives. However, phenols are not valuable as fuels. Combustion heating value of liquid products obtained from thermochemical conversion processes of hemicellulose was in the range of 6,680~7,170 cal/g. After 40 min of reaction at $400^{\circ}C$ in pyrolysis-liquefaction of hemicellulose, the energy yield and mass yield were as high as 72.2% and 41.2 g oil/100 g raw material, respectively.

Polymeric Material Application for The Production of Ceramic Foam Catalyst

  • Sangsuriyan, Anucha;Yeetsorn, Rungsima;Tungkamani, Sabaithip;Sornchamni, Thana
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • Ceramic foams are prepared as positive images corresponding to a plastic foam structure which exhibits high porosities (85-90%). This structure makes the ceramic foams attractive as a catalyst in a dry reforming process, because it could reduce a high pressure drop problem. This problem causes low mass and heat transfers in the process. Furthermore, the reactants would shortly contact to catalyst surface, thus low conversion could occur. Therefore, this research addressed the preparation of dry reforming catalysts using a sol-gel catalyst preparation via a polymeric sponge method. The specific objectives of this work are to investigate the effects of polymer foam structure (such as porosity, pore sizes, and cell characteristics) on a catalyst performance and to observe the influences of catalyst preparation parameters to yield a replica of the original structure of polymeric foam. To accomplish these objectives industrial waste foams, polyurethane (PU) and polyvinyl alcohol (PVA) foams, were used as a polymeric template. Results indicated that the porosity of the polyurethane and polyvinyl alcohol foams were about 99% and 97%. Their average cell sizes were approximate 200 and 50 micrometres, respectively. The cell characteristics of polymer foams exhibited the character of a high permeability material that can be able to dip with ceramic slurry, which was synthesized with various viscosities, during a catalyst preparation step. Next, morphology of ceramic foams was explored using scanning electron microscopy (SEM), and catalyst properties, such as; temperature profile of catalyst reduction, metal dispersion, and surface area, were also characterized by $H_2-TPR$ and $H_2-TPD$ techniques, and BET, respectively. From the results, it was found that metal-particle dispersion was relatively high about 5.89%, whereas the surface area of ceramic foam catalysts was $64.52m^2/g$. Finally, the catalytic behaviour toward hydrogen production through the dry reforming of methane using a fixed-bed reactor was evaluated under certain operating conditions. The approaches from this research provide a direction for further improvement of marketable environmental friendly catalyst production.

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Effects on the Magnetic Property Changes due to the defect in the Nuclear Reactor Vessel Material Irradiated by Fast Neutron (고속 중성자 조사에 의한 원자로 용기재료내의 결함생성이 자기적 특성변화에 미치는 영향)

  • Jeong, Myeong-Mo;Kim, Gil-Su;Jang, Gi-Sang;Yu, Geun-Bae;Park, Deok-Geun;Kim, Gil-Mu;Yun, In-Seop;Hong, Chi-Yu
    • Korean Journal of Materials Research
    • /
    • v.9 no.12
    • /
    • pp.1240-1244
    • /
    • 1999
  • In order to assess the effects on the magnetic properties due to the defect in the material irradiated by fast neutron ranging $10^0-10^{18}n/cm^2$, the magnetic properties such as maximum magnetic induction, coercivity, remanence, Barkhausen Noise Amplitude(BNA), Barkhausen Noise Energy(BNE) and hardness were measured. It is shown that the magnetic properties and hardness do not change by the fast neutron irradiation under $10^{17}n/cm^2$. Therefore, in this experiment, it is understood that the magnetic properties decrease by the increase of hardness. This measurement method can be used to evaluate the neutron irradiation embrittlement nondestructively since the magnetic properties and hardness do change by the neutron irradiation over $10^{17}n/cm^2$ consistently.

  • PDF