• Title/Summary/Keyword: reactor head inspection

Search Result 18, Processing Time 0.027 seconds

Tele-Operated Mobile Robot for Visual Inspection of a Reactor Head

  • Choi, Chang-Hwan;Jeong, Kyung-Min;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2063-2065
    • /
    • 2003
  • The control rod drive mechanisms in a reactor head are arranged too narrow for a human worker to approach. Moreover, the working environment is in high radiation area. In order to inspect defections in the surfaces of the reactor head and welding parts, a visual inspection device that can approach such a narrow and high radiation area is required. This paper introduces a tele-operated mobile robot for visual inspection of a reactor head, which has pan/tilt camera, fixed rear camera, ultrasonic collision detection system, and so on. Moreover, the host controller and digital video logging system are developed and integrated control software is also developed. The robot is operated by a wireless control, which gives flexibility for the inspection.

  • PDF

Pre-Service Inspection for Reactor Vessel Penetration Nozzle (원자로 헤드 관통관 노즐 가동전 검사 수행)

  • Lee, Dong Jin;Noh, Ik Jun;Shin, Kun Chul;Kim, Hae Suck;Hong, Joo Youl;Choi, Jung Kwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2010
  • US NRC issued rulemaking of 10CFR50.55a to perform the Perservice and Inservice inspection for Reactor Vessel Head Penetration Nozzle of US Nuclaer plant. The rulemaking was required the EPRI Demonstration to verify the NDE technique performing special Ultrasonic examination. In order to meet this requirement, the UT and ECT procedures was demonstrated and the NDE personnel were qualified by EPRI. In this paper, the NDE technique and analysis method are described the Preservice inspection for the Palo Verde #1/2/3 Replacement Reactor Vessel Head Penetration Nozzle using the qualified procedures and personnel.

  • PDF

Integrity of the Reactor Vessel Support System for a Postulated Reactor Vessel Closure Head Drop Event

  • Kim, Tae-Wan;Lee, Ki-Young;Lee, Dae-Hee;Kim, Kang-Soo
    • Nuclear Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.576-582
    • /
    • 1996
  • The integrity of reactor vessel support system of the Korean Standard Nuclear Power Plant (KSNPP) is investigated for a postulated reactor vessel closure head drop event. The closure head is disassembled from the reactor vessel during refueling process or general inspection of reactor vessel and internal structures, and carried to proposed location by the head lift rig. A postulated closure head drop event could be anticipated during closure head handling process. The drop event may cause an impact load on the reactor vessel and supporting system. The integrity of the supporting system is directly relevant to that of reactor vessel and reactor internals including fuels. Results derived by elastic impact analysis, linear and non-linear buckling analysis and elasto-plastic stress analysis of the supporting system implied that the integrity of the reactor vessel supporting system is intact for a postulated reactor vessel closure head drop event.

  • PDF

A Study I on the Sizing Accuracy of the Characterized Defects of the Reactor Vessel Head Penetrations (원자로헤드 관통관 결함의 검출 정확성 연구)

  • Chung Tae-hoon;Kim Han-Jong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.216-227
    • /
    • 2005
  • The head penetrations for control rod drive mechanism and instrumentation systems are installed at the reactor pressure vessel head of PWRs. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloy through a process called primary water stress corrosion cracking (PWSCC). Inspection of the head penetrations to ensure the integrity of the head penetrations has been interested since reactor coolant leakages were found at U. S. reactors in 2000 and 2001. The complex geometry of the head penetrations and the very low echo amplitude from the fine, multiple flaws due to the nature of the see made it difficult to detect and size the flaws using conventional pulse-echo UT methods. Time-of-flight-diffraction technique, which utilizes the time difference between the flaw tips while pulse-echo does the flaw response amplitude from the flaw, has been selected for this inspection for it's best performance of the detection and sizing of the head penetration see flaws. This study defines the limits of the detectable and accurately sizable minimum flaw size which can be detected by the General TOFD and the Delta TOFD techniques for circumferentially and axially oriented flaws respectively. These results assures the reliability of the inspection techniques to detect and accurately size for various kind of flaws, and will also be utilized for the future development and qualifications of the TOFD techniques to enhance the detecting sensitivity and sizing accuracy of the flaws of the reactor head penetrations in nuclear power plants.

  • PDF

Development of Reactor Vessel Head Penetration Performance Demonstration System in Korea (국내 원자로 상부헤드관통관 기량검증 기술개발)

  • Kim, Yongsik;Yoon, Byungsik;Yang, Seunghan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2014
  • There were many flaw issues of reactor vessel head penetration in USA fleets. USNRC issued 10CFR50.55a to implement reactor vessel head penetration ultrasonic examination performance demonstration(PD) in US for enhancement of inspection reliability. After September 2009, all US utilities inspected their RVHP with PD qualified system. Korea Hydro and Nuclear Power Company(KHNP) have developed reactor vessel head penetration performance demonstration system for ultrasonic test to apply for pressurized light-water reactor power plants in accordance with 10CFR50.55a since September 2011. RVHP configuration surveying and analysis, code requirement analysis, and performance demonstration specimen design were performed up to this day. Fingerprinting of manufactured specimen, development of test data management program, development of operation procedure, input of flawed data, and development of final report will be performed for the next step. This paper describes the development status of the performance demonstration system for reactor vessel head penetration ultrasonic examination in Korea.

Design Optimization of CRDM Motor Housing

  • Lee, Jae Seon;Lee, Gyu Mahn;Kim, Jong Wook
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.586-592
    • /
    • 2016
  • The magnetic-jack type CRDM withdraws or inserts a control rod assembly from/to the reactor core to control the core reactivity. The CRDM housings form not only the path of the electromagnetic field but also the pressure boundary of a nuclear reactor, and a periodic in-service inspection should be carried out if there are welded or flange jointed parts on the pressure boundary. The in-service inspection is a time-consuming process during the reactor refueling, and moreover it is difficult to perform the inspection over the reactor head. A magnetic motor housing is applied for the current SMART CRDM and has several welding joints, however a nonmagnetic motor housing with fewer or no welding joints may improve the operational efficiency of the nuclear reactor by avoiding or simplifying the in-service inspection process. Prior to the development, the magnetic field transfer efficiency of the nonmagnetic housing was required to be assessed. It was verified and optimized by the electromagnetic analysis of the lifting force estimation. Magnetic flux rings were adopted to improve the efficiency. In this paper, the design and optimization process of a nonmagnetic motor housing with the magnetic flux rings for the SMART CRDM are introduced and the analyses results are discussed.

Inspection of Calandria Reactor Area of Wolsung NPP using Thermal Infrared and CCD Images (CCD와 적외선 열영상의 다중영상을 이용한 월성원자력발전소의 칼란드리아 전면부 점검)

  • Cho, Jai-Wan;Choi, Young-Soo;Kim, Chang-Hoi;Seo, Yong-Chil;Kim, Seung-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.711-714
    • /
    • 2002
  • Thermal infrared camera have poor image qualities compared to commercial CCD cameras, as in contrast, brightness, and. resolution. To compensate the poor Image quality problems associated with the thermal infrared camera, the technique of superimposing thermal infrared image into real ccd image is proposed. The mobile robot KAEROT/m2, loaded with sensor head system at the mast, is entered to monitor leakage of heavy water and thermal abnormality of the calandria reactor area in overhaul period. The sensor head system is composed of thermal infrared camera and cod camera In parallel. When thermal abnormality on observation points and areas of calandria reactor area is occurred, unusual hot image taken from thermal infrared camera is superimposed on real CCD image. In this inspection experiment, more accurate positions of thermal abnormalities on calandria reactor area can be estimated by using technique of mapping thermal infrared image into CCD image, which include characters arranged in MPOQ order.

  • PDF

Reactor vessel head penetration J-groove welds inspection by TOFD technique (TOFD Technique을 이용한 원자로헤드 관통관 용접부 비파괴검사)

  • Kim, Wang-Bae;Lee, Yeong-Ho;Mun, Yong-Sik;Kim, Chang-Su
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.185-187
    • /
    • 2005
  • The reactor pressure vessel head of PWR has penetrations for control rod drive mechanism and instrumentation systems. The Primary coolant water and operating temperature can cause the stress-corrosion cracking of these nickel-based alloy penetrations. It is difficult to detect and size flaws such as SCC in the reactor head penetrations using conventional W methods because of complex geometry, Therefore, the utilities are using the TOFD technique for the detection and sizing of the flaw. This study shows the correlation between the ultrasonic wave direction and the orientation of the flaw and the range of flaw depth which can be detected by the TOFD techniques.

  • PDF

Ultrasonic Inspection of Cracks in Stud Bolts of Reactor Vessels in Nuclear Power Plants by Signal Processing of Differential Operation

  • Choi, Sang-Woo;Lee, Joon-Hyun;Oh, Won-Deok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.439-445
    • /
    • 2005
  • The stud bolt is one of crucial parts for safe operation of reactor vessels in nuclear power plants, Crack initiation and propagation were reported in stud bolts that arc used for closure of reactor vessel and head, Stud bolts are inspected by ultrasonic technique during overhaul periodically for the prevention of stud bolt failure which could induce radioactive leakage from nuclear reactor, In conventional ultrasonic testing for inspection of stud bolts, cracks are detected by using shadow effect It takes too much time to inspect stud bolts by using conventional ultrasonic technique. In addition, there were numerous spurious signals reflected from every oblique surfaces of thread, In this study, the signal processing technique for enhancing conventional ultrasonic technique was introduced for inspecting stud bolts. The signal processing technique provides removing spurious signal reflected from every oblique surfaces of thread and enhances detectability of defects. Detectability for small crack was enhanced by using this signal processing in ultrasonic inspection of stud bolts in Nuclear Power Plants.

Development of a Ranging Inspection Technique in a Sodium-cooled Fast Reactor Using a Plate-type Ultrasonic Waveguide Sensor (판형 웨이브가이드 초음파 센서를 이용한 소듐냉각고속로 원격주사 검사기법 개발)

  • Kim, Hoe Woong;Kim, Sang Hwal;Han, Jae Won;Joo, Young Sang;Park, Chang Gyu;Kim, Jong Bum
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2015
  • In a sodium-cooled fast reactor, which is a Generation-IV reactor, refueling is conducted by rotating, but not opening, the reactor head to prevent a reaction between the sodium, water and air. Therefore, an inspection technique that checks for the presence of any obstacles between the reactor core and the upper internal structure, which could disturb the rotation of the reactor head, is essential prior to the refueling of a sodium-cooled fast reactor. To this end, an ultrasound-based inspection technique should be employed because the opacity of the sodium prevents conventional optical inspection techniques from being applied to the monitoring of obstacles. In this study, a ranging inspection technique using a plate-type ultrasonic waveguide sensor was developed to monitor the presence of any obstacles between the reactor core and the upper internal structure in the opaque sodium. Because the waveguide sensor installs an ultrasonic transducer in a relatively cold region and transmits the ultrasonic waves into the hot radioactive liquid sodium through a long waveguide, it offers better reliability and is less susceptible to thermal or radiation damage. A 10 m horizontal beam waveguide sensor capable of radiating an ultrasonic wave horizontally was developed, and beam profile measurements and basic experiments were carried out to investigate the characteristics of the developed sensor. The beam width and propagation distance of the ultrasonic wave radiated from the sensor were assessed based on the experimental results. Finally, a feasibility test using cylindrical targets (corresponding to the shape of possible obstacles) was also conducted to evaluate the applicability of the developed ranging inspection technique to actual applications.