• Title/Summary/Keyword: reactive power margin

Search Result 28, Processing Time 0.021 seconds

A Study on the Method of the Vulnerable Area Investigation In Severe Contingencies Using Branch Parameter Continuation Power Flow (선로정수 연속 조류계산을 이용한 가혹한 상정고장에 있어서 취약지역 도출방안에 대한 연구)

  • Seo Sang Soo;Lee Byong Jun;Kim Tae Ok;Kim Tae Kyun;Choo Jin Boo;Lee Jeong Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.113-116
    • /
    • 2004
  • Many methods to examine the vulnerable areal for the contingencies in the power system. The most widely used index for the vulnerable area investigation has been the reactive power margin or sensitivity analysis. But we can get the results of these analyses if only the results of load flow are convergent in severe contingencies, otherwise these methods are not adoptable. We can present a good index for overcoming severe contingencies, if we can get the vulnerable areas by bus sensitivity in severe contingencies, though the power flow equation is unsolvable. This paper simulates unsolvable severe contingencies by using branch parameter continuation power flow. We can compute the vulnerable areas in unsolvable severe contingencies by normal vector at a nose point of a $\nu-V$ curve. Presented method is checked the input reactive power of the vulnerable areas in KEPCO system.

  • PDF

A Probabilistic Evaluation Method on Maximal Flow of Power Systems (최대전력수송능력의 확률론적 평가법)

  • Jeong, M.H.;Yoo, S.H.;Lee, B.;Song, K.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.911-914
    • /
    • 1998
  • This paper presents an algorithm that evaluates the transfer capability of composite power systems using probabilistic approaches. The reliability indices calculated by using probabilistic method are expected maximal flow, expected transfer capability margin, and expected power not supplied. In this paper, a successive linear programming technique is used to evaluate transfer capability named maximal flow. Physical constraints considered in the maximal flow problem are the limits of toad voltage, line overloading, and real & reactive power generation. Numerical results on IEEE RTS show that the proposed algorithm is effective and useful.

  • PDF

Integrated Stability Analysis for Power Systems Using Energy Function (에너지함수에 의한 통합안정도해석)

  • Moon, Young-Hyun;Lee, Eung-Hyuk;Lee, Yoon-Seop;Oh, Yong-Taeg;Kim, Baik
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.77-79
    • /
    • 1996
  • This paper presents an integrated stability analysis by the direct energy function method based on Equivalent Mechanical Model(EMM) which reflects the system behavior related to both angle and voltage stabilities. Actually, angle and voltage stability are intimately related in power system, so complete decoupling of these stability analysis is not possible in general, particularly in stressed power systems. In this paper, it is shown that a identical energy function can be used for angle and voltage stability analysis. The proposed energy function reflects the line resistances and reactive powers under the constraints of the same R/X ratio. The energy margin between UEP and SEP presents a good collapse proximity index in both types of stability analysis.

  • PDF

Enhancement of Voltage Stability by Generation Redispatch (발전력 재분배에 의한 전압안정도 향상)

  • Nam, Hae-Kon;Song, Chung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.235-237
    • /
    • 1997
  • The distance in load parameter space to the closest voltage collapse point (CSNB) provides the worst case power margin and the left eigenvector identifies the most effective direction to steer the system to maximize voltage stability under contingency. This paper proposes a new generation redispatch algorithm, which uses left eigenvector at CSNB to enhance the voltage stability. A Newton method is used to detect CSNB point. Proposed method is applicable to the selection of appropriate reactive power compensation and load shedding point detection. But this paper make a point of voltage stability enhancement only with generation redispatch. The proposed method has been tested for Klos Kerner 11-bus system.

  • PDF

Evaluation of Transfer Capability based on Load Supplying Capability Calculation using Nonlinear Primal-Dual Interior Point Method (비선형 주.쌍대내점법을 이용한 부하공급능력의 산정에 기반한 전력수송능력의 평가)

  • Jeong, Min-Hwa;Lee, Byeong-Jun;Song, Gil-Yeong
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.4
    • /
    • pp.161-167
    • /
    • 2000
  • This paper presents a new methodology that can evaluate transfer capability of composite power systems from the adequacy point of view in power system planning stages. First of all, to evaluate practical load supplying capability, nonlinear optimization problems of maximum load supplying capability(MLSC) and economic load supplying capability(ELSC) are formulated and solved by nonlinear primal-dual interior point method. Here, physical constraints considered in the optimization problems are the limits of bus voltage, line overloading, and real & reactive power generation. Also, an evaluation method of transfer capability is presented based on margins calculated by the MLSC and ELSC. Especially, to evaluate transfer capability flexibly, simple indices such as expected MLSC, transfer capability margin, and power not supplied are respectively proposed by considering (N-1) line outage probability. Numerical results on IEEE RTS 24, IEEE 118, and IEEE 300 bus system show that the proposed algorithm is effective and useful for power system planning stages.

  • PDF

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

Development of advanced Power Factor Computation Algorithm in Harmonics distorted Distribution System (고조파 왜곡 환경에서 향상된 역률 계측 알고리즘 개발)

  • Lee, Hyun-woo;Park, Young-kyun;Lee, Jinhan;Joung, Sanghyun;Park, Chul-woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.121-127
    • /
    • 2016
  • We propose a algorithm to calculate power factor of fundamental waveform in an environment where the voltage and current have been distorted by harmonics. In the proposed power factor computation algorithm, voltage and current are converted to rotating DQ reference frame, and power factor is calculated from active power and reactive power. We compare the proposed method with the conventional power factor measurement method as mathematically. In a condition that voltage and current are distorted by harmonics, the proposed method accurately measure the power factor of fundamental wave, and it is confirmed by simulation using MATLAB. If the proposed power factor measurement method is applied to an automatic power factor control system, a power factor compensation performance can be maximized in harmonic distortion environment. As a result, it is possible to reduce electricity prices, reduce line loss, increase load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.

Power Factor Compensation System based on Voltage-controlled Method for 3-phase 4-wire Power System (3상 4선식 전력계통에서 전압제어 방식의 역률보상시스템)

  • Park, Chul-woo;Lee, Hyun-woo;Park, Young-kyun;Joung, Sanghyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.8
    • /
    • pp.107-114
    • /
    • 2017
  • In this paper, a novel power factor compensation system based on voltage-controlled method is proposed for 3-phase 4-wire power system. The proposed voltage-controlled power factor compensation system generates a reactive power required for compensation by applying a variable output voltage by a slidac to a capacitor. In conventional power factor compensation system using the capacitor bank method, the power factor compensation error occurs depending on the load condition due to the limited capacity of the capacitors. However, the proposed system compensates the power factor up to 100% without error. In this paper, we have developed a voltage-controlled power factor compensation system and a control algorithm for 3-phase 4-wire power system, and verify its performance through simulation and experiments. If the proposed power factor compensation system is applied to an industrial field, a power factor compensation performance can be maximized. As a result, it is possible to reduce of electricity prices, reduce of line loss, increase of load capacity, ensure the transmission margin capacity, and reduce the amount of power generation.