• Title/Summary/Keyword: reactive black

Search Result 144, Processing Time 0.021 seconds

Batch Decolorization of Reactive Dye Waste Water by a Newly Isolated Comamonas sp. AEBL-85. (반응성 염료폐수 처리를 위한 Comamonas sp. AEBL-85 분리 및 회분식 탈색)

  • 이은열
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.577-581
    • /
    • 2004
  • Comamonas sp. AEBL-85 was isolated from microbial granules in an activated sludge process of long-term operated for the treatment of reactive azo dye, and characterized its capability to decolorize Reactive Black 5. The effects of adding carbon source and nitrogen source on the extent of decol-orization were analyzed to develop an optimal medium. The optimum initial pH and temperature wire 6.0 and 35$^{\circ}C$, respectively. Reactive Black 5 of 50 mg/l was readily decolorized up to 95% within 40 hr by Comamonas sp. AEBL-85.

Dye Adsorption Ability of Chitin in Reactive Dyebath (반응염료염액에서의 키틴의 염료흡착성능)

  • 유혜자;김정희;이혜자;이전숙
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.26 no.2
    • /
    • pp.349-354
    • /
    • 2002
  • In order to decolorize the reactive dye wastewater, we investigated the dye-adsorption ability of chitin, which was natural polymer obtained from shrimp shell. Chitin particle(less than 250 ${\mu}{\textrm}{m}$n) was prepared from shrimp shells in the processes of decalcification in aqueous hydrochloric acid solution and deproteination in aqueous sodium hydroxide solution. The particle size of chitin was controlled to less than 250 ${\mu}{\textrm}{m}$. Three tripes of the reactive dyes-C.I. Reactive Red 120, C.I. Reactive red 241 and C.I. Reactive Black 5-were used. Dye adsorption ability of chitin was investigated by dipping the particle in the dyebaths of concentration of 0.0l%, 0.03% and 0.05% for various periods of time(1,3,5, 10,20,40,80,160minutes). The influence of addition of salt(Na$_2$SO$_4$) and alkali to the dyebaths on dye-absorption was also investigated. We obtained the following results fur the dye-absolution ability of chitin in the dyebaths of three types of reactive dyes. 1) The amount of dye uptake by chitin was increased by addition of salt to the dyebaths. 2) As the concentration of alkali became higher than 3g/I, the amount of dye uptake by chitin was increased. Chitin showed good dye-adsorption ability, when the alkali concentration was high. 3) Chitin showed equal dye uptake in the three types of dyebaths when the dye concentration was 0.0l%. Over 90% of dyestuffs was adsorbed from the dyebaths in ten minutes. When the dye concentration was higher, better adsorption ability was showed in a dye bath of Reactive black 5 than in the others. When the dye concentration was 0.03%, 90% of Reactive red 120 and Reactive red 241 was adsorbed in 40 minutes and the same of Reactive black 5 in 10 minutes. When the dye concentration was 0.05%, 9()% of Reactive red 120 was adsorbed in 80 minutes, and Reactive black 5 in to minutes.

The Effects of Resist Agents on the Resist-Discharge Behaviors of C.I. Reactive Black 5 in the Resist-Discharge Printing of Cotton Fabrics with Reactive/Reactive Dyes (반응/반응염료에 의한 면직물 방발염에 있어 C.I. Reactive Black 5의 방발염 거동에 미치는 방염제의 영향)

  • Park, Geon Yong
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.8-14
    • /
    • 1996
  • In resist-discharge printing of cotton fabrics with reactive/reactive dyes the effects of both resist agents, benzaldehyde sodium bisulfite(BASB) and glyoxal sodium bisulfite (GSB), and Rongalite on the resist-discharge behaviors of C.I. Reactive Black 5(B1-5), which is disazo type and has two vinylsulfone groups, were investigated. It was confirmed that BASB and GSB were effective resist agents, and about 4% of BASB or about 6% of GSB was proper to obtain successful white or colored resist-discharge results. It was thought that the good resist-dischargeability of BASB was due to the hydrophobicity of bezene in BASB, and also that of GSB resulted from the structural effects caused by two hydroxy groups in GSB and the ease of washing of unactivated reactive dye. Only 5% Rongalite without any resist agents showed good resist-discharge result, but 1~3% Rongalite with 4% BASB brought about the stain of cotton fabric by reddish monoazo products produced by insufficient cleavage of two azo groups in Bl-5.

  • PDF

Photoinitiator-free Photo-reactive Coloration of Wool Fabrics Using C.I. Reactive Black 5

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.24 no.2
    • /
    • pp.97-105
    • /
    • 2012
  • Compared with conventional adsorption-based coloration, the photoreactions of dyes such as photo-copolymerization and photo-crosslinking under UV irradiation can be employed for the coloration of textiles, which can be carried out without salt addition at room temperature. C.I. Reactive Black 5, a homo-bifunctional reactive dye containing two sulfatoethylsulfone groups, is used as a photo-reactive dye for wool fibers. Upon UV irradiation, the photo-reactive dye was grafted onto wool fabrics without photoinitiators. Since the disulfide bonds in the cystine residues of wool can be easily photodecomposed to active thiyl radicals which initiate the polymerization, the dye can be polymerized to an oligomeric dye of a degree of polymerization of 12 or more. The grafted fabrics reached a grafting yield of 2.3% o.w.f. and a color yield (K/S) of 18.2 by the photografting of an aqueous dye concentration of 9% using a UV energy of 25J/$cm^2$. Furthermore, the photochemically dyed wool fabric showed higher colorfastness properties to light, laundering and rubbing comparable to conventional reactive dyeing.

Enzymatic Decolorization of Various Dyes by Trametes versicolor KCTC 16781 (Trametes versicolor KCTC 16781에 의한 다양한 염료의 색도제거 특성)

  • 박철환;이유리;김탁현;이명구;이병환;이진원;김상용
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.398-403
    • /
    • 2003
  • Due to the low biodegradability of dyes, conventional biological wastewater treatment systems are inefficient in treating dye wastewater. Various white-rot fungi were investigated for the decolorization of six industrial dyes (reactive blue 5, reactive blue 16, reactive black 5, acid black 52, reactive orange 16, and acid violet 43). Among ten fungi, T. versicolor KCTC 16781 was selected as a testing strain because this had the best performance of decolorization for six dyes from the results of the solid culture experiments. In liquid culture medium, T. versicolor KCTC 16781 decolorized over 96% of six dyes for 48 hrs. Laccase started to produce in the early stage of the culture, and showed the highest peak value of 2.3 U/mL in 24 hrs. Enzyme activity remained constant until the end of culture. Fungal decolorization is a promising alternative to replace or supplement present treatment process.

Novel Coloration of Cotton Fabrics by UV-induced Phtografting of Reactive Black 5 and Acrylic acid

  • Dong, Yuanyuan;Jang, Jin-Ho
    • Textile Coloration and Finishing
    • /
    • v.23 no.1
    • /
    • pp.11-20
    • /
    • 2011
  • UV-induced surface copolymerization has been widely applied as a simple, useful and versatile approach to improve the surface properties of textiles. C.I. Reactive Black 5 and acrylic acid (AA) were continuously grafted onto cotton by UV irradiation. The photografting may occur by the copolymerization of AA with the vinylsulfone reactive dye which photochemically converted from the bissulfatoethylsulfone reactive group. The graft yield and color yield were influenced by UV energy, the dye and photoinitiator concentrations, a mole ratio of AA to dye, and pH. The coloration of cotton fabrics having a K/S of 7.0 can be obtained under a UV irradiation energy of 15$J/cm^2$ by the photografting of an aqueous alkaline formulation of 6% dye concentration containing 3% photoinitiator concentration on the weight of monomers, and a 3:1 mole ratio addition of AA to the dye. Furthermore, the photochemically dyed cotton fabrics showed comparable washing (staining) and rubbing fastness to conventional reactive dyeing method except shade change in the wash fastness and light fastness.

Generation of Reactive Oxygen Species Contributes to the Development of Carbon Black Cytotoxicity to Vascular Cells

  • Lee, Jong-Gwan;Noh, Won-Jun;Kim, Hwa;Lee, Moo-Yeol
    • Toxicological Research
    • /
    • v.27 no.3
    • /
    • pp.161-166
    • /
    • 2011
  • Carbon black, a particulate form of pure elemental carbon, is an industrial chemical with the high potential of occupational exposure. Although the relationship between exposure to particulate matters (PM) and cardiovascular diseases is well established, the cardiovascular risk of carbon black has not been characterized clearly. In this study, the cytotoxicity of carbon black to vascular smooth muscle and endothelial cells were examined to investigate the potential vascular toxicity of carbon black. Carbon black with distinct particle size, N330 (primary size, 28~36 nm) and N990 (250~350 nm) were treated to A-10, rat aortic smooth muscle cells and human umbilical vein endothelial cell line, ECV304, and cell viability was assessed by lactate dehydrogenase (LDH) leakage assay. Treatment of carbon black N990 resulted in the significant reduction of viability in A-10 cells at 100 ${\mu}g$/ml, the highest concentration tested, while N330 failed to cause cell death. Cytotoxicity to ECV304 cells was induced only by N330 at higher concentration, 200 ${\mu}g$/ml, suggesting that ECV304 cells were relatively resistant to carbon black. Treatment of 100 ${\mu}g$/ml N990 led to the elevation of reactive oxygen species (ROS) detected by dichlorodihydrofluorescein (DCF) in A-10 cells. Pretreatment of antioxidants, N-acetylcysteine (NAC) and sulforaphane restored decreased viability of N990-treated A-10 cells, and N-acetylcysteine, but not sulforaphane, attenuated N990-induced ROS generation in A-10 cells. Taken together, present study shows that carbon black is cytotoxic to vascular cells, and the generation of reactive oxygen contributes to the development of cytotoxicity. ROS scavenging antioxidant could be a potential strategy to attenuate the toxicity induced by carbon black exposure.

Photomineralisation of Reactive Black 5 with ZnO using Solar and UV-A Light (태양광과 UV-A 빛 하에서 ZnO 을 이용한 Reactive Black 5의 광분해작용)

  • Amisha, S.;Selvam, K.;Sobana, N.;Swaminathan, M.
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • The photocatalytic degradation of a textile diazo dye in aqueous solution has been investigated under Solar and UV-A light. The effect of various parameters such as concentration of dye, amount of catalyst and pH on the degradation of dye has been studied. Addition of hydrogen peroxide, ammonium persulphate and isopropanol strongly influences the degradation rate. Kinetic analysis of photodegradation reveals that the degradation follows approximately pseudo first order kinetics according to the Langmuir-Hinshelwood model. Carbon dioxide, nitrate and sulphate ions have been identified as mineralisation products. The photocatalyst ZnO was found to be more efficient in UV-A light than in Solar light.

An Optochemical Sensor for the Determination of Divalent Transition Metal Ions Based on a Reactive Dye (반응성 염료를 이용한 2가 전이금속 측정용 광센서)

  • Kim, Sung Bae;Lee, Hyuk Jin;Kim, Jin Mog;Shin, Doo Soon;Cha, Geun Sig;Nam, Hakhyun
    • Analytical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.305-310
    • /
    • 1998
  • A reactive dye synthesized with an amine containing Eriochrome Black T derivative and cynauric chloride was immobilized on a cellulose membrane to construct an optical sensor for the detection of divalent transition metal ions in aqueous solution. The response of this reactive dye-based optical sensor was as sensitive as that of Eriochrome Black T in solution phase. Its typical detection limits for $Zn^{2+}$ and $Co^{2+}$ were $6.3{\times}10^{-5}mol/l$ and $2.5{\times}10^{-4}mol/l$, respectively. No loss in the sensitivity of reactive dye-based sensor was observed even the pH of flowing solutions continually varied for an extended period of time.

  • PDF