• Title/Summary/Keyword: reaction pH

Search Result 3,828, Processing Time 0.029 seconds

A Study on the Treatment of Refractory Organics by Redox Reaction of Cu-Zn Metal Alloy (Cu-Zn 금속 합금의 산화.환원 반응에 의한 난분해성 COD처리에 관한 연구)

  • Song, Ju-Yeong;Park, Ji-Won;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.166-172
    • /
    • 2013
  • The purpose of this study is to evaluate the treatment ability of refractory organics in hot rolling precess waste water by redox(reduction and oxidation) reaction. Metal is oxidized in an aqueous solution to generate electron which can reduce water to generate hydroxy radical. These hydroxy radical is very effective to conduct hydrogen abstraction reaction and addition reaction to the carbon - carbon unsaturated link. The surface area of metal alloy reaction material is more than enough to get equilibrium at a single treatment. The efficiency of COD treatment by redox reaction showed maximum at mild pH of pH 7 and pH 6. But it was not effective in acidic atmosphere of pH 3, 4, 5 and basic atmosphere of pH 8 or over. Redox reaction system in much more helpful in a commercial coagulation sedimentation treatment than exclusive system.

A Role of Dissolved Iron ion in Combined Fenton Reaction for Treatment of TNT Contaminated Soil (오염토양처리를 위한 혼합 Fenton 공정에서 용존 철이온이 오염산화처리에 미치는 역할에 관한 연구)

  • Seo, Seung-Won;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.6
    • /
    • pp.76-82
    • /
    • 2006
  • Fenton's reaction are difficult to apply in the field due to the low pH requirements for the reaction and the loss of reactivity caused by the precipitation of iron (II) at neutral pH. Moreover, Fenton-like reactions using iron mineral instead of injection of iron ion as a catalyst are operated to get high removal result at low pH. Because hydroxyl radical can generate at the surface of iron mineral, there are competition with a lot of hydroxide at around neutral pH. On the other side, to operate Fenton's reaction series at neutral pH, modified Fenton reaction is suggested. The complexes, composed by iron ions (ferrous ion or ferric ion)-chelating agent, could be acted as a catalyst and presented in the solution at neutral pH. However, modified Fenton reaction requires a lot of hydrogen peroxide. Accordingly, the purpose of this experiment was to effectively combine Fenton-like reaction and modified Fenton reaction for extending application of Fenton's reaction. i.e., injecting chelating agents in Fenton-like reaction at around neutral pH is increasing the concentration of dissolved iron ion and highly promoting the oxidation effect. 2,4,6-trinitrotoluene (TNT) was used as a probe compound for comparing reaction efficiencies in this study. If the concentration of dissolved iron ion in combined Fenton process were existed more than 0.1 mM, the total TNT removal were increased. Magnetite-NTA system showed the best TNT removal (76%) and Magnetite-EDTA system indicated about 56% of TNT removal. The results of these experiments proved more promoted 40-60% of TNT removal than Fenton-like reaction's.

The Effect of Temperature and pH on Bromate Formation by Ozonation (오존처리시 Bromate생성에 미치는 온도 및 pH의 영향)

  • Lee, Mu Gang;Kim, Yeong Cheol;Choe, Jong Won
    • Journal of Environmental Science International
    • /
    • v.13 no.7
    • /
    • pp.667-674
    • /
    • 2004
  • The objective of this study was to investigate the effects of pH and temperature on the formation of bromate, which is ozonation by-products, during ozonation. In this experiment, the operating parameters including pH 3 ~ 10 and temperature 15 ~ $30^{\circ}C$ were studied. Through the study for the bromate formation, reaction rate constant, and ozonation effect index on pH and temperature, the results obtained are as follows. At the same initial pH condition, the increase of pH shown similar trends even if the reaction variables such as temperature and reaction time of ozonation were exchanged. As pH and temperature were increasing, the bromate concentration was increased but bromine(HOBr+OBr) was decreased with increasing pH from 3 to 10. The activation energy(J/mol) for bromate formation decreased with increasing pH. The rate constants of bromate formation for the reaction of ozone and bromide, and ozone dosage coefficient$(K_{0})$ increased with temperature and pH. Ozonation effect index(OI) decreased with increasing temperature and pH.

Determination of the pH of Iso-Selectivity of the Interfacial Diffusion Layer of Fe

  • Ha, Heon Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Passive metal forms an interfacial diffuse layer on the surface of passive film by its reaction with $H^+$ or $OH^-$ ions in solution depending on solution pH. There is a critical pH, called pH point of iso-selectivity ($pH_{pis}$) at which the nature of the diffuse layer is changed from the anion-permeable at pH<$pH_{pis}$ to the cation-permeable at pH>$pH_{pis}$. The $pH_{pis}$ for a passivated Fe was determined by examining the effects of pH on the thickness of passive film and on the dissolution reaction occurring on the passive film under a gavanostatic reduction in borate-phosphate buffer solutions at various pH of 7~11. The steady-state thickness of passive film formed on Fe showed the maximum at pH 8.5~9, and further the nature of film dissolution reaction was changed from a reaction producing $Fe^{3+}$ ion at $pH\leq8.5$ to that producing $FeO_2{^-}$ at $pH\geq9$, suggesting that the $pH_{pis}$ of Fe is about pH 8.5~9. In addition, the passive film formed at pH 8.5~9, $pH_{pis}$, was found to be the most protective with the lowest defect density as confirmed by the Mott-Schottky analysis. Pitting potential was decreased with increasing $Cl^-$ concentration at $pH\leq8.5$ due probably to the formation of anion permeable diffuse layer, but it was almost constant at $pH\geq9$ irrespective of $Cl^-$ concentration due primarily to the formation of cation permeable diffuse layer on the film, confirming again that $pH_{pis}$ of Fe is 8.5~9.

Effects of pH of Reaction Solution on the Structural and Optical Properties of CdS Thin Films for Solar Cell Applications (태양전지용 CdS 박막의 구조적 및 광학적 특성에 미치는 반응용액의 pH 영향)

  • Lee, Jae-Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.616-621
    • /
    • 2011
  • In this paper, CdS thin films, which were widely used window layer of the CdTe and the Cu(In,Ga)$Se_2$ thin film solar cell, were grown by chemical bath deposition, and effects of pH of reaction solution on the structural and optical properties were investigated. For pH<10.5, as the pH of reaction solution was higher, the deposition rate of CdS films was increased by improving ion-by-ion reaction in the substrate surface and the crystallinity of the films was improved. However, when the pH was higher than 10.5, the deposition rate was decreased because of smaller $Cd^{2+}$ ion concentration in the reaction solution. Also, the crystallinity of the films were deteriorated. The CdS films deposited at lower pH showed poor optical transmittance due to adsorbed colloidal particles, while the transmittance was improved for higher pH.

Platinum-Catalyzed Reductive Aldol and Michael Reactions

  • Lee, Ha-Rim;Jang, Min-Soo;Song, Young-Jin;Jang, Hye-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.327-333
    • /
    • 2009
  • For the Pt-catalyzed nucleophilic addition of enones, Pt complexes were employed in the presence of various phosphine ligands and $H_2\;(or\;Et_3SiH),$ affording inter- and intra-molecular coupling products in good to modest yield. Depending on reaction protocols, different phosphine ligands were required to optimize the conditions. In the aldol reaction, the Pt catalyst involving $P(2,4,6-(OMe)_3C_6H_2)3\;or\;P(p-OMeC_6H_4)_3$ was chosen. Michael reaction proceeds in good yields in the presence of $P(p-CF_3C_6H_4)_3$. Regarding the activity of the reductants, $H_2$ exhibited superior activity to $Et_3SiH$, resulting in a shorter reaction time and higher yield in the aldol and Michael reaction. In light of the deuterium labeling studies, the catalytic cycle including the hydrometalation of the enones by the platinum hydride species was proposed.

The Kinetics and Mechanism of Nucleophilic Addition of Mercaptan to a ${\beta}$-Nitrostyrene in Acidic Media (I) (${\beta}$-Nitrostyrene에 대한 Mercaptan의 親核性 添加反應에 關한 硏究 (I))

  • Park, Ok-Hyun
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.106-113
    • /
    • 1968
  • The rate-constants of the nucleophilic addition reaction of n-butylmercaptan to 3,4-methylenedioxy-${\beta}$-nitrostyrene were determined at various acidic pH and a rate equation which can be applied over wide pH range was obtained. From this equation, one may conclude that this reaction is started by addition of mercaptan molecule below pH 3, while above pH 6, the overall rate of addition is almost only depend upon the concentration of nitrostyrene and the mercaptide ion. At pH 3∼6, the complex mechanism of this addition reaction can also be fully explained by the rate equation.

  • PDF

Synthesis of Vaterite Powders with a Spherical Shape by the Precipitation Method (침전법에 의한 구형 Vaterite분말의 합성)

  • 윤봉구;신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1208-1212
    • /
    • 2003
  • CaCO$_3$ powders were synthesized by aqueous solution reaction of CaC1$_2$ㆍ2$H_2O$-(NH$_4$)$_2$CO$_3$ system with NH$_4$OH at 45$^{\circ}C$ and pHs 8, 9, 10, and 11 and in the concentration range of 0.1∼5 M and its polymorphism, morphology and size were investigated. In order to investigate the influence of pH on nucleation, pH was adjusted before and after reaction respectively. When pH was adjusted after reaction a formation ratio of vaterite was increased with increasing pH and concentration but vaterite was formed with calcite. But, when pH was adjusted before reaction, the formation rate of vaterite was increased with increasing pH and concentration. resulting in a phase-pure vaterite with a spherical shape and 2∼5 $\mu\textrm{m}$ in size. It was found that solubility of alkaline vaterite was decreased with increasing OH- ions in the high pH solution. When pH was adjusted before nucleation in the high concentration range, in particular, decreasing of solubility disturbed transformation of initially formed numerous vaterite to calcite.

Nitrite Scavenging Effect of Maillard Reaction Products Derived from Glucose-Amino Acids (Glucose-아미노산계 Maillard 반응생성물의 아질산염 소거작용)

  • Kim, Seon-Bong;Lee, Dong-Ho;Yeum, Dong-Min;Park, Jin-Woo;Do, Jung-Roung;Park, Yeung-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.453-458
    • /
    • 1988
  • This research was carried out to investigate the effects of Maillard reaction products and nondialyzable melanoidins on the nitrite-scavenging. Nitrite-scavenging reactions were done at the different pH conditions(pH 1.2, 4.2 and 6.0). Maillard reaction products and nondialyzable melanoidins, produced from the glucose-amino acids(lys., gly., arg., his.)model systems, had a great of nitrite-scavenging effects. Nitrite-scavenging effects of Maillard reaction products and nondialyzable melanoidins were also pH dependent, being higher at pH 1.2 and lower at pH 6.0. By the treatment of Maillard reaction products and nondialyzable melanoidins with sodium borohydride, nitrite-scavenging effects were remarkably decreased at pH 1.2.

  • PDF

EFFECTS OF REACTION TIME AND pH ON FENTON'S BATCH PROCESS FOR THE TREATMENT OF LEACHATE

  • Choi, Heung-Jin;Kim, Il-Kyu
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.2
    • /
    • pp.169-187
    • /
    • 2002
  • The effects of important parameters such as reaction time and pH on the Fenton's process were evaluated using a batch reactor. It was proven that organic materials and heavy metals in leachate could be successfully removed by Fenton's reagent. Favorable operation conditions were investigated. It was observed that the reaction between ferrous iron and hydrogen peroxide with the production of hydroxyl radical was almost complete in 10 minutes. That is, the oxidation of organic materials by Fenton's reagent was so fast that it was complete in 30 minutes with batch experiments. With the formation of carbonic acid, pH of the batch reactor decreased to favorable acidic conditions without acid addition. The oxidation of organic materials in the leachate showed a pH dependence and was most efficient in the pH range of 2-3.