• 제목/요약/키워드: reaction mechanism

검색결과 2,684건 처리시간 0.028초

The Kinetics and Mechanism for the Oxidation of Nicotinic Acid by Peroxomonosulfate in Acidic Aqueous Medium

  • Agrawal, Anju;Sailani, Riya;Gupta, Beena;Khandelwal, C.L.;Sharma, P.D.
    • 대한화학회지
    • /
    • 제56권2호
    • /
    • pp.212-216
    • /
    • 2012
  • The kinetics of oxidation of nicotinic acid by peroxomonosulfate (PMS) has been studied in acetate buffers. Stoichiometry of the reaction corresponds to the reaction of one mole of the oxidant with a mole of nicotinic acid. N${\rightarrow}$O product has been confirmed both by UV visible and IR spectroscopy. The reaction is second order viz. first order with respect to each reactant. Activation parameters have also been evaluated. A plausible reaction mechanism is mentioned and the derived kinetic rate law accounts for experimental observations.

$\alpha$-Diethylaminoacetophenone의 시안화칼륨과 탄산암모늄과의 반응 메카니즘 연구(II) (Reaction Mechanism of $\alpha$-Diethylaminoacetophenone with Potassium Cyanide and Ammonium Cabonate(II))

  • 권순경;조정혁
    • 약학회지
    • /
    • 제23권3_4호
    • /
    • pp.167-171
    • /
    • 1979
  • It is knwon that in the reaction of .alpha.-diethylaminoacetophenone with potassium cyanide and ammonium carbonate in dilute alcohol solution, 5-phenylhydantoin is formed. In this study the mechanism of the reaction by which diethylaminomethyl group is eliminated, was investigated with applying GC/MS-system. From the fragmentation pattern of mass spectrum of the unknwon compound, which has mol peak 112, it was identified as diethylaminoacetonitrile. According to our GC/MS study of the reaction mixture, it seems likely that diethylaminomethyl group is eliminated neither through the alkali degradation of .alpha.-diethylaminoacetophenone to aldehyde nor after the anticipated hydantoin formation. But it is believed that in the course of ring formation through an unidentified mechanism diethylaminomethyl group is eliminated.

  • PDF

자전연소합성 반응중 속빈 TiC 섬유의 형성 기구 (Forming Mechanism of TiC Hollow Fibers during Self-Propagating High Temperature Synthesis)

  • 윤존도;방환철
    • 한국세라믹학회지
    • /
    • 제37권4호
    • /
    • pp.332-337
    • /
    • 2000
  • Forming mechanism of fibrous TiC during self-propagating high temperature synthetic reaction was analyzed and suggested. It was revealed that critical temperature for the stable fiber formation was not the melting point of TiC, but the eutectic reaction temperature of TiC and C. Minimum amount of TiC diluent addition required to form fibers was calculated to be 25.6%, which was consistent with the experimental result. Synthesized fibers were found hollow tube-like. The morphology was explained by the diffusion rates of C and Ti in TiC, and by the molar volume chnage of C during the reaction. Expanding shell model was suggested for the hollow fiber formation mechanism.

  • PDF

디니트로티오펜계 분산염료인 C. I. Disperse Green 9의 알칼리 가수분해 반응속도 및 반응메카니즘 (Kinetics and Mechanism for Alkaline Hydrolysis of Dinitrothiophene Disperse Dye(C. I. Disperse Green 9))

  • 박건용;김재현
    • 한국염색가공학회지
    • /
    • 제19권4호
    • /
    • pp.18-25
    • /
    • 2007
  • Kinetics and mechanism for alkaline hydrolysis of C. I. Disperse Green 9(G-9) of dinitrothiophene disperse dye were investigated. As soon as G-9 contacted with alkali, instant and continuous decreases of color strength of G-9 followed with increasing time. The hydrolysis rate of G-9 increased with increasing alkali, and it was found that alkali appeared first order dependence. The observed rate constants obtained from hydrolysis of various amount of dye were similar values, and calculation of initial rates showed that G-9 hydrolyzed by first order reaction for dye. Therefore it was confirmed that the overall reaction was second order, $SN_2$ of nucleophilic substitution reaction. Increasing temperature enhanced the hydrolysis of G-9. From the results of hydrolysis performed at various temperatures, it was obtained that activation energy(Ea) was 12.6 kcal/mole, enthalpy of reaction(${\triangle}H$) was 12.0 kcal/mole, and entropy of reaction(${\triangle}S$) was $29.8J/mol{\cdot}K$.

Ab Initio Study of Mechanism of Forming Spiro-Heterocyclic Ring Compound Involving Si and Ge from Dichlorosilylene Germylidene (Cl2Si-Ge:) and Acetone

  • Liu, Dongting;Ji, Hua;Lu, Xiuhui
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4079-4083
    • /
    • 2012
  • The mechanism of the cycloaddition reaction between singlet state dichlorosilylene germylidene ($Cl_2Si=Ge:$) and acetone has been investigated with B3LYP/6-$31G^*$ and B3LYP/6-$31G^{**}$ method, from the potential energy profile, we predict that the reaction has one dominant reaction pathway. The presented rule of the reaction is that the two reactants firstly form a Si-heterocyclic four-membered ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge atom in the Si-heterocyclic four-membered ring germylene and the ${\pi}$ orbital of acetone forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the Si-heterocyclic four-membered ring germylene further combines with acetone to form an intermediate. Because the Ge atom in the intermediate hybridizes to an $sp^3$ hybrid orbital after the transition state, then, the intermediate isomerizes to spiro-heterocyclic ring compound involving Si and Ge (P4) via a transition state.

Aminolysis of Benzyl 4-Pyridyl Carbonate in Acetonitrile: Effect of Modification of Leaving Group from 2-Pyridyloxide to 4-Pyridyloxide on Reactivity and Reaction Mechanism

  • Bae, Ae-Ri;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2719-2723
    • /
    • 2012
  • A kinetic study is reported for nucleophilic substitution reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in MeCN. The plot of pseudo-first-order rate constant ($k_{obsd}$) vs. [amine] curves upward, which is typical for reactions reported previously to proceed through a stepwise mechanism with two intermediates (i.e., a zwitterionic tetrahedral intermediate $T^{\pm}$ and its deprotonated form $T^-$). Dissection of $k_{obsd}$ into the second- and third-order rate constants (i.e., $Kk_2$ and $Kk_3$, respectively) reveals that $Kk_3$ is significantly larger than $Kk_2$, indicating that the reactions proceed mainly through the deprotonation pathway (i.e., the $k_3$ process) in a high [amine] region. This contrasts to the recent report that the corresponding aminolysis of benzyl 2-pyridyl carbonate 5 proceeds through a forced concerted mechanism. An intramolecular H-bonding interaction was suggested to force the reactions of 5 to proceed through a concerted mechanism, since it could accelerate the rate of leaving-group expulsion (i.e., an increase in $k_2$). However, such H-bonding interaction, which could increase $k_2$, is structurally impossible for the reactions of 6. Thus, presence or absence of an intramolecular H-bonding interaction has been suggested to be responsible for the contrasting reaction mechanisms (i.e., a forced concerted mechanism for the reaction of 5 vs. a stepwise mechanism with $T^{\pm}$ and $T^-$ as intermediates for that of 6).

무증자전분의 분쇄마찰매체에 의한 효소당화촉진 Mechanism의 규명 (Enhancing mechanism of the saccharification of uncooked starch in an agitated bead reaction system)

  • 조구형;이용현
    • 한국미생물·생명공학회지
    • /
    • 제14권5호
    • /
    • pp.407-413
    • /
    • 1986
  • 분쇄마찰매체에 의한 무증자 생전분의 효소당화촉진 mechanism을 전분의 구조적 측면을 중심으로 규명하였다. 당화촉진 효과를 줄 수 있는 수준의 분쇄마찰매체의 기계적 교반운동은 생전분의 미세결정구조(microcrystalline structure) 파괴는 물론 전분입자를 붕괴 (fragmentation) 시키는 효과도 없었다. 생전분 입자구조 변화의 중요한 특징은 입자구조의 팽윤(swelling) 현상으로써 팽윤된 전분은 보수능력이 2.5배 정도까지 증가되었다. 이와 같은 기계적 충격에 의한 전분입자의 팽윤현상은 가열호화에 의한 $\alpha$-전분화에 따른 팽윤현상가는 상이하였다. 생전분을 장시간 bead-milling하여 전처리하며 팽윤시킨 생전분은 당화가 촉진되었으나 bead와 효소를 동시에 첨가시킨 경우의 당화속도와 수율에는 미치지 못하였다. 분쇄마찰 반응계에서 효소를 첨가 무증자 전분을 당화시킬 경우에는 생전분입자 2시간 전후하여 수많은 입자로 fragmentation되었다. 생전분의 당화촉진 mechanism은 분쇄마찰매체에 의하여 전분입자가 균열팽윤되고 이 팽윤된 생전분은 보다 쉽게 효소작용을 받아 침식되며 이 침식된 전분입자는 분쇄마찰매체에 의하여 더욱 가속적으로 fragmentation되어 효소작용이 촉진된다고 판단된다. 옥수수, 감자, 고구마 등 각종 생전분은 그 종류에 따라 분쇄마찰 반응계를 활용한 무증자 당화에 많은 차이가 있었으며 이를 전분입자의 구조와 연결시켜 고찰하였다.

  • PDF

The “Trivial” Mechanism for the Photo-Fries Reaction of Phenyl Acetate and Biphenylyl Acetates

  • 윤효정;고성혜;고미경;최우기
    • Bulletin of the Korean Chemical Society
    • /
    • 제21권9호
    • /
    • pp.901-904
    • /
    • 2000
  • The mechanism for the photo-Fries rearrangement of phenyl acetate andbiphenylyl acetates were reinvestigat-ed in phenol (or phenol derivatives) containing media. The results showed that the phenol (or phenol deriva-tives) which is the most common by-product of Fries reaction reacts with acyl radical togive Fries-product. These phenol (or phenol derivatives) contributions to the Fries-products were suggested as the Trivial mecha-nism for the photo-Fries reaction.

Hula-twist, a Supramolecular Photoisomerization Reaction Mechanism in Reactions of Photosensitive Biopigments

  • Liu, Robert S.H.
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.1-4
    • /
    • 2002
  • Hula-twist is a volume-conserving photoisomerization reaction mechanism postulated in 1985 to account for the rapid photoisomerization of the retinyl chromophore in rhodopsin. The requisite stereochemical consequence of simultaneous isomerization of a double bond and an adjacent single bond has recently been demonstrated in isomerization of pre-vitamin D in an organic glass and by many other examples of organic systems already reported in the literature This paper reports the consequence in applying the mechanism to the primary photochemical process of several photosensitive biopigments: bilirubin, photoactive yellow protein, bacteriorhodopsin and rhodopsin. It is shown that the anchored nature of the chromophores must first be taken into consideration.

  • PDF