• Title/Summary/Keyword: reaction induced phase separation

Search Result 7, Processing Time 0.031 seconds

The Study on Phase Separation Development by Curing Reaction Rate for Unsaturated Polyester/Polyvinylacetate Semi-IPN (Unsaturated Polyester/Polyvinylacetate Semi-IPN의 경화반응속도에 따른 상분리현상 연구)

  • Chang, Won-Young;Kim, Moo-Sool;Kim, Jin-Hwan;Nam, Jae-Do
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.78-89
    • /
    • 2001
  • Morphological changes of unsaturated polyester/polyvinylacetate semi-IPN were studied while the phase separation and the cure reaction occurred in a competing fashion. The light scattering and thermal analysis techniques were used to investigate the phase separation rates and mechanical properties resultantly induced by molecular diffusion of thermoplastic polymer during the curing process of thermosetting polymer. The reaction activation energy was calculated by using Flynn-Wall method and the semi-IPN structure exhibited various phase-separation morphological characteristics. When PVAc composition was 10 wt%, the phase separation was not observed during the curing reaction, but the phase separation occurred in a similar fashion to nucleation and growth(NG) mechanism at room temperature. On the other hand, when PVAc composition was over 11.65 wt%, the phase separation was generated in the middle of the curing process. Consequently, the phase separation seemed to influence the curing reaction rate, which was also supported by the changing activation energy with conversion and PVAc composition. Finally, the total scattered intensity was measured at various temperature, and subsequently the diffusion rates of phase separation R(${\beta}m$) were evaluated.

  • PDF

Rheological behavior during the phase separation of thermoset epoxy/thermoplastic polymer blends

  • Kim, Hongkyeong;Kookheon Char
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.1
    • /
    • pp.77-81
    • /
    • 2000
  • Rheological behavior of thermoset/thermoplastic blends of epoxy/polyethersulphone (PES) was monitored during curing of the epoxy resin. During the isothermal curing of the mixture, a fluctuation in viscosity just before the abrupt viscosity increase was observed. This fluctuation is found to be due to the phase separation of PES from the matrix epoxy resin during the curing. The experimentally observed viscosity fluctuation is simulated with a simple two phase suspension model in terms of the increase in domain size. The viscosity profiles obtained experimentally at different isothermal curing temperatures are in good agreement with the predictions from the simple model taking into account the viscosity change due to the growth of PES domain and the network formation of the epoxy matrix.

  • PDF

Cement/PVDF hollow-fiber hybrid basement membrane: Preparation, microstructure, and separation application

  • Yabin, Zhang;Xiongfei, Du;Taotao, Zhao
    • Membrane and Water Treatment
    • /
    • v.13 no.6
    • /
    • pp.291-301
    • /
    • 2022
  • In this study, cement/PVDF hollow-fiber hybrid membranes were prepared via a mixed process of diffusion-induced phase separation and hydration. The presence of X-ray diffraction peaks of Ca(OH)2, an AFt phase, an AFm phase, and C-S-H phase confirmed the hydration reaction. Good hydrophilicity was obtained. The cross-sectional and surface morphologies of the hybrid membranes showed that an asymmetric pore structure was formed. Hydration products comprising parallel plates of Ca(OH)2, fibrous ettringite AFt, and granulated particles AFm were obtained gradually. For the hybrid membranes cured for different time, the pore-size distribution was similar but the porosity decreased because of blocking of the hydration products. In addition, the water flux decreased with hydration time, and carbon retention was 90% after 5 h of rejection treatment. Almost all the Zn2+ ions were adsorbed by the hybrid membrane. The above results proved that the obtained membrane could be alternative as basement membrane for separation application.

Chain extension effects of para-phenylene diisocyanate on crystallization behavior and biodegradability of poly(lactic acid)/poly(butylene terephthalate) blends (파라-페닐렌 다이이소시아네이트의 사슬 연장이 PLA/PBT 블렌드의 결정화 거동과 생분해성에 미치는 영향)

  • Kim, Myung-Wook;Hong, Sung-Min;Lee, Doo-Jin;Park, Kwang-Seok;Youn, Jae-Ryoun
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.18-28
    • /
    • 2009
  • Blends of poly(lactic acid) (PLA) and poly(butylene terephthalate) (PBT) were prepared by reaction extrusion with para-phenylene diisocyanate (PPDI). The crystallization behavior and biodegradability were investigated by using a differential scanning calorimeter (DSC), a wide angle X-ray diffractometer (WAXD), a contact angle goniometer, and a buffer solution containing esterase. The addition of PBT into PLA polymer matrix induced the cold crystallization of PLA phase, and the crystallization rate of PLA phase was significantly accelerated when both PBT and PPDI participated in the reaction with PLA simultaneously. But the chain extension caused by PPDI decreased the crystallinity and hydrophilicity of PLA and PBT phases. The crystallinity and hydrophilicity did not affect the biodegradability of PLA/PBT blends. However, phase separation between PLA and PBT in PLA/PBT blends increased the interfacial area exposed to the hydrolysis of enzyme, resulting in the improved degradability rate of PLA phase. In contrast, the improved interfacial adhesion between PLA and PBT matrices by the reaction with PPDI reduced the area exposed to the enzyme to decrease the degradation rate of PLA phase.

Phenol/formaldehyde-derived macroporous carbon foams prepared with aprotic ionic liquid as liquid template

  • Byun, Hae-Bong;Nam, Gi-Min;Rhym, Young-Mok;Shim, Sang-Eun
    • Carbon letters
    • /
    • v.13 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Herein, macroporous carbon foams were successfully prepared with phenol and formaldehyde as carbon precursors and an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ($BMIPF_6$), as a pore generator by employing a polymerization-induced phase separation method. During the polycondensation reaction of phenol and formaldehyde, $BMIPF_6$ forms a clustered structure which in turn yields macropores upon carbonization. The morphology, pore structure, electrical conductivity of carbon foams were investigated in terms of the amount of the ionic liquid. The as-prepared macroporous carbon foams had around 100-150 ${\mu}m$-sized pores. More importantly, the electrical conductivity of the carbon foams was linearly improved by the addition of $BMIPF_6$. To the best of the author's knowledge, this is the first result reporting the possibility of the use of an ionic liquid to prepare porous carbon materials.

InP Quantum Dot - Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.191-191
    • /
    • 2012
  • InP quantum dot (QD) - organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs which were capped with myristic acid (MA) were incompatible with typical silicone encapsulants. Post ligand exchange the MA with a new ligand, 3-aminopropyldimethylsilane (APDMS), resulted in soluble InP QDs bearing Si-H groups on their surface (InP-APDMS) which allow embedding the QDs into vinyl-functionalized silicones through direct chemical bonding, overcoming the phase separation problem. However, the ligand exchange from MA to APDMS caused a significant decrease in the photoluminescent efficiency which is interpreted by ligand induced surface corrosion relying on theoretical calculations. The InP-APDMS QDs were cross-linked by 1,4-divinyltetramethylsilylethane (DVMSE) molecules via hydrosilylation reaction. As the InP-organosilicon nanocomposite grew, its UV-vis absorbance was increased and at the same time, the PL spectrum was red-shifted and, very interestingly, the PL was quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nano-composites, namely the scattering effect, Forster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

  • PDF

HPLC-tandem Mass Spectrometric Analysis of the Marker Compounds in Forsythiae Fructus and Multivariate Analysis

  • Cho, Hwang-Eui;Ahn, Su-Youn;Son, In-Seop;Hwang, Gyung-Hwa;Kim, Sun-Chun;Woo, Mi-Hee;Lee, Seung-Ho;Son, Jong-Keun;Hong, Jin-Tae;Moon, Dong-Cheul
    • Natural Product Sciences
    • /
    • v.17 no.2
    • /
    • pp.147-159
    • /
    • 2011
  • A high-performance liquid chromatography-electrospray ionization-tandem mass spectrometric method was developed to determine simultaneously eight marker constituents of Forsythiae fructus, and subsequently applied it to classify its two botanical origins. The marker compounds of Forsythia suspensa were phillyrin, pinoresinol, phillygenin, lariciresinol and forsythiaside; those of F.viridissima were arctiin, arctigenin and matairesinol. Separation of the eight analytes was achieved on a phenyl-hexyl column (150${\times}$2.0 mm i.d., 3 ${\mu}M$) using gradient elution with the mobile phase: (A) 10% acetonitrile in 0.5% acetic acid, (B) 40% aqueous acetonitrile. A few fragment ions specific to the types of lignans, among the product ions generated by collisonally induced dissociation (CID) of molecular ion clusters, such as [M-H]$^-$ or [M+OAc]$^-$ were used not only for fingerprinting analysis but for the quantification of each epimer by using multiple-reaction monitoring mode. It was shown good linearity ($r^2{\geq}$ 0.9998) over the wide range of all analytes; intra- and inter-day precisions (RSD, %) were within 9.14% and the accuracy ranged from 84.3 to 115.1%. The analytical results of 40 drug samples, combined with multivariate statistical analyses - principal component analysis (PCA) and hierarchical cluster analysis (HCA) - clearly demonstrated the classification of the test samples according to their botanical origins. This method would provide a practical strategy for assessing the authenticity or quality of the herbal drug.