• Title/Summary/Keyword: reactants of photosynthesis

Search Result 4, Processing Time 0.015 seconds

Multidimensional Scaling Analysis of the Proximity of Photosynthesis Concepts In Korean Students

  • Kim, Youngshin;Jeong, Jae-Hoon;Lim, Soo-Min
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.3
    • /
    • pp.650-663
    • /
    • 2013
  • Multidimensional scaling can be used to identify relationships among concepts, revealing the structure of the cognitive framework by measuring distances within perceptual maps. The current study sought to examine the relationships among concepts related to photosynthesis in 2,844 $3^{rd}-11^{th}$ grade science students. The questionnaire included items on 'location,' 'products,' 'reactants,' and 'environmental factors', presenting images related to each theme. Students provided responses corresponding to particular topics, and reported the extent to which the concept was related to the topic on a scale from 1 to 30. The survey results were as follows: first, students were not able to clearly distinguish between or understand the four main topics. Second, students organized their cognitive structures by closely associating related concepts after learning. Third, the presented concepts revealed a mixture of scientific and non-scientific concepts, suggesting that students needed to clearly distinguish the preconceptions through which they organized concepts, so that they are suitable for cognitive structures based on learning. Furthermore, non-scientific concepts within perceptions were consistently maintained throughout learning, affecting the proximity of scientific concepts.

Analysis of Concept's Diversity and Proximity for Photosynthesis in Grade 7 Students

  • Lim, Soo-Min;Jeong, Jae-Hoon;Kim, Youngshin
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.6
    • /
    • pp.1050-1062
    • /
    • 2012
  • Concepts of science have been developed by occupying 'ecological niche' within conceptual ecology. The ecological niche is determined from the mutual effect between intellectual environmental of the learner and new concept, which few studies have been conducted. This study examined how the ecological niche of the concept of photosynthesis in $7^{th}$ grade is changed by instruction. The ecological niche was analyzed using 2 methods: (1) the change in the diversity of concepts, and (2) the change in the proximity of concepts based on the frequency and the relativeness score of the concepts. The concept of photosynthesis was analyzed in the 4 domains in the place of photosynthesis, products of photosynthesis, reactants of photosynthesis, and environmental factors. The results of this study are as follows: (1) reduced diversity of concepts, (2) increased frequency and relativeness score of the scientific concepts, and (3) increased proximity of the scientific concepts by instruction. With these results, the mutual effects of the concepts within the conceptual ecology have become active by class to differentiate the relationships between the concepts, which accordingly displayed their changes in status.

Analysis on the Change of Niche Overlap of Elementary School Students' Photosynthesis Concepts through Instruction (초등학교 학생들의 수업 전후 광합성 관련 개념의 지위 중복 변화 분석)

  • Lim, Soo-Min;Kim, Young-Lan;Shin, Ae-Kyung;Kim, Youngshin
    • Journal of Korean Elementary Science Education
    • /
    • v.34 no.1
    • /
    • pp.72-85
    • /
    • 2015
  • Conception in learner's cognitive structure has a niche as species in ecosystems. The purpose of this study is to analyze the change of niche overlap of photosynthesis concept through instruction. The photosynthesis concepts were selected from literature review. Selected concepts were in 4 areas: Location of photosynthesis, reactants, products, and environmental factors. The subjects consisted 304 elementary students. The respondent marked the relevance between the presented concepts and each area on a scale of 1~30 points. The analysis of niche overlap in concepts was performed by changing in niche overlap graph, niche space size, and overlap index before and after instruction. The results are as follows. First, on the whole understanding level and relevance of the scientific concepts was increased through instruction as a result of learning. Second, elementary school students cognitive concepts in the form of chunking concepts through classification process. Based on the results, this study has the following suggestion. Students' conceptual ecologies and niche analyzed by this study will be used as material for development of instruction strategy.

Analysis of Concept's Proximity of 7th Grade Students' Photosynthesis Concepts by the Level of Science Attitude (7학년 학생의 과학 태도 수준에 따른 광합성 관련 개념의 근접성 변화 분석)

  • Lee, Hee-Jeong;Kim, Youngshin
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.10
    • /
    • pp.1524-1536
    • /
    • 2012
  • Science attitudes affect the quality of learning, and they are considered as one of the major concerns in science education. It is necessary to analyze the proximity between concepts with science attitudes. Accordingly, this study was designed to analyze the proximity of the concept related to photosynthesis as it changed after class according to the levels of science attitudes. A survey on the concept of photosynthesis and science attitudes before and after class was conducted on 270 7th-grade students. The concept of photosynthesis was composed of 'the place of photosynthesis,' 'products of photosynthesis,' 'reactants of photosynthesis,' and 'environmental factors.' The proximity of the concept of photosynthesis was analyzed through the utilization of multidimensional scaling (MDS). The research results were as follows: (1) Students changed the proximity between concepts by acquiring concrete concepts through class. (2) The upper group in science attitudes tends to be closer to the proximity between scientific concepts through class, compared to the intermediate and lower groups. (3) In all students with entire levels of science attitudes, non-scientific concepts continued to exist even after class, and the non-scientific concepts were deemed to interfere with the proximity between scientific concepts related to photosynthesis. (4) Students turned out to be aware of the concepts related to each other in four areas associated with photosynthesis. That is, it can be said that students are closely aware of the place where photosynthesis can occur and the materials needed as well as materials generated as a result of photosynthesis and the materials needed in terms of concepts related to photosynthesis.