• Title/Summary/Keyword: reactance load

Search Result 44, Processing Time 0.024 seconds

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

Design of a Miniaturized 5.3 GHz 360° Analog Phase Shifter (소형화된 5.3 GHz 대역 360° 아날로그 위상천이기 설계)

  • Jeong, Hae-Chang;Son, Bon-Ik;Lee, Dong-Hyun;Ahmed, Abdul-Rahman;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.602-612
    • /
    • 2013
  • In this paper, a design and fabrication of miniaturized 5.3 GHz reflection type $360^{\circ}$ analog phase shifter with branch line coupler and $360^{\circ}$ variable reactance load. In order to miniaturize phase shifter, novel branch line coupler is proposed. The novel branch line coupler is miniaturized using transformation of transmission line to T and ${\pi}$ type equivalent circuit. The miniaturized branch line coupler has small size of above 50 % compared with conventional branch line coupler. For wide phase shift range, $360^{\circ}$ variable reactance load structure is adopted. Especially, the structure was improved for linear phase shift by adding transmission line which acts as an impedance transformer. The improved structure was miniaturized using the equivalent lumped-element of transmission line. The fabricated phase shifter with $15{\times}15mm^2$ shows wide phase shift of above $480^{\circ}$, the insertion loss of -4~-6 dB and the reflection loss of below -20 dB at 5.3 GHz under 0~10 V control voltage range.

Design of an Asymmetrical Three-phase Inverter for Load Balancing and Power Factor Correction Based on Power Analysis

  • Mokhtari, M.;Golshannavaz, S.;Nazarpour, D.;Aminifar, F.
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.293-301
    • /
    • 2011
  • This paper presents a novel theoretical method based on power analysis to obtain voltage reference values for an inverter-based compensator. This type of compensator, which is installed in parallel with the load, is usually referred to as the active filter. The proposed method is tailored to design the compensator in such a way that it can simultaneously balance the asymmetric load, as well as correct the power factor of the supply side. For clarity, a static compensator is first considered and a recursive algorithm is utilized to calculate the reactance values. The algorithm is then extended to calculate voltage reference values when the compensator is inverter based. It is evident that the compensator would be asymmetric since the load is unbalanced. The salient feature associated with the proposed method is that the circuit representation of system load is not required and that the load is recognized just by its active and reactive consumptions. Hence, the type and connection of load do not matter. The validity and performance of the new approach are analyzed via a numerical example, and the obtained results are thoroughly discussed.

Development of Power System Impedance Analyzer on the Electric Railway (전기철도 급전계통 임피던스 분석장치 개발)

  • Lee, Chang-Mu;Chang, Sang-Hoon;Han, Moon-Seob;Oh, Kwang-Hae
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.387-389
    • /
    • 1998
  • For the continuous and exact measurement of load impedance of AC power system on the electric railway, this paper presents a method to show the load area to resistance(R)-reactance(X) plane of impedance plane. The load area is presented in terms of impedance which is in the ratio of voltage and current continuously measured and impedance plane indicates the protection area of fault locator. The proposed method is verified its reasonability by computer simulation, and using this method we will develop the power system impedance analyser which is available actual application.

  • PDF

A Recursive Distance Relaying Algorithm Immune to Fault Resistance (고장저항의 영향을 최소화한 순환형 거리계전 알고리즘)

  • Ahn, Yong-Jin;Kang, Sang-Hee;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.259-261
    • /
    • 2001
  • An accurate digital distance relaying algorithm which is immune to the combined reactance effect of the fault resistance and the load current is proposed. The algorithm can estimate adaptively the impedance to a fault point independent of the fault resistance. To compensate the apparent impedance, this algorithm uses iteratively the angle of an impedance deviation vector improved step by step. The impedance correction algorithm for ground faults uses a current distribution factor to compensate mutual coupling effect.

  • PDF

Numerical Analysis and Implementation of Microstrip Antenna with Reactance Load (리액턴스 장하형 마이크로스트립 안태나의 특성해석 및 제작)

  • Jean, Sang-Bong;Oh,, Jae-Hyun;Ahn, Chang-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.125-126
    • /
    • 2006
  • 송수신 사이의 거리가 가까운 GPR 시스템들과 같이 신호가 빨리 감쇄되는 산란 측정시스템에서는 송신신호의 왜곡을 줄여 산란체의 신호를 정밀하게 찾아내는 것이 매우 중요하다. 여기에 주로 사용되는 광대역 안테나는 안테나의 급전점과 끝부분의 개방단 사이에서 다중 반사가 일어나서 입력신호의 왜곡으로 인한 떨림현상이 일어나게 되는데, 본 논문에서는 리액턴스 장하를 통해 안테나의 내부 반사를 줄인 초광대역 안테나를 설계하고 제작하여 특성을 측정하였다.

  • PDF

Performance Analysis for Passive Filter Considering Allowable Limits of Tolerance (오차의 허용범위를 고려한 수동형 필터의 특성 해석)

  • Kim, Jong-Gyeum;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • Reactors are connected with capacitors to passive filter circuits for reducing harmonics caused by power conversion application. This passive filter frequently gets out of order by voltage and current stress. Especially filter reactor has too much voltage harmonics components, its trouble rate is higher than capacitor. In this paper, we analyzed voltage and current of reactor and capacitor used for passive filter by simulation and measurement. If reactor has a tolerance on variation of reactance value, series resonance frequency is different from originally filter design frequency and parallel resonance can be generated at the close point of the former. Because filter absorbs harmonic component of non-linear load, much of harmonic voltage has been impacted on reactor.

The Characteristic Analysis of the Ag/Bi-2223 Tape and the Flux damper in GTS Synchronous Motor through 3-Dimensional Magnetic Field Analysis Using F.E.M (3차원 자계분포해석을 이용한 고온초전도동기모터에서의 Ag/Bi-2223 Tape 및 Flux Damper의 특성해석)

  • 송명곤;윤용수;이상진;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.170-172
    • /
    • 2000
  • This paper deals with the characteristic analysis of the flux damper with respect to the load, and the stability of Ag/Bi-2223 tapes in a high-Tc superconducting (HTS) synchronous motor. To find out the magnetic field distribution in a detailed model of the actual motor, the experimentally measured currents of the armature and the field windings are used as input parameters. The simulation results show that the flux damper shields the time varying field up to 10%, reduces armature reactance during the motor operation and during load changes, improving the stable motor operation. And it was observed that the flux damper generates loss by means of leakage flux, but this is not significant and it doesn't degrade the performance of the TS synchronous motor.

  • PDF

Performance Analysis of 30 kVA Super-Conducting Generator under Light Load (30 kVA 초전도 발전기의 소용량 부하 인가시 운전특성 해석)

  • Ha, Kyoung-Duck;Hwang, Don-Ha;Park, Doh-Young;Kim, Yong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.271-273
    • /
    • 1999
  • In this paper 30 kVA Super-Conducting Generator's test and analysis results of OCC and SCC are presented. Also the test and FE analysis results of the generator under 1.2, 2.4, and 3.6[kW] load are described. For FE analysis of the generator's performance, the external circuit is coupled with the FE region. The generator's end winding reactance is obtained based on the design data, actual dimension, preliminary FE analysis, and empirical formulas. The comparison of FE analysis coupled with external circuit to the test results shows a good agreement.

  • PDF